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ABSTRACT

We study cobordisms and cobordisms rel boundary of PL locally-flat disk

knots D
n−2

→֒ D
n. Any two disk knots are cobordant if the cobordisms

are not required to fix the boundary sphere knots, and any two even-

dimensional disk knots with isotopic boundary knots are cobordant rel

boundary. However, the cobordism rel boundary theory of odd-dimension-

al disk knots is more subtle. Generalizing results of J. Levine on the cobor-

dism of sphere knots, we define disk knot Seifert matrices and show that

two higher-dimensional disk knots with isotopic boundaries are cobordant

rel boundary if and only if their disk knot Seifert matrices are algebraically

cobordant. We also ask which algebraic cobordism classes can be realized

given a fixed boundary knot and provide a complete classification when

the boundary knot has no 2-torsion in its middle-dimensional Alexander

module.

In the course of this classification, we establish a close connection be-

tween the Blanchfield pairing of a disk knot and the Farber–Levine torsion

pairing of its boundary knot (in fact, for disk knots satisfying certain con-

nectivity assumptions, the disk knot Blanchfield pairing will determine the

boundary Farber–Levine pairing). In addition, we study the dependence

of disk knot Seifert matrices on choices of Seifert surface, demonstrating

that all such Seifert matrices are rationally S-equivalent, but not neces-

sarily integrally S-equivalent.
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1. Introduction

The cobordism theory of locally-flat knots was introduced by Fox and Milnor

[5] in order to determine when a PL embedding of a 2-manifold in a 4-manifold

can be made locally-flat by modifying the embedding only in neighborhoods

of the isolated singularities. In any dimension, since neighborhood pairs of

isolated singular points of codimension two manifold embeddings are isomorphic

to cones on PL locally-flat link knots of spheres, such a replacement is possible

if and only if the link knot embedding K : Sn−2 →֒ Sn can be extended to a

locally-flat embedding L : Dn−1 →֒ Dn+1; if this is possible, then K is called

null-cobordant or slice. This definition quickly leads to a broader definition

in which two locally-flat knots K0, K1 : Sn−2 →֒ Sn are deemed cobordant if

and only if there exists a locally-flat proper embedding K : Sn−2 × I →֒ Sn × I

such that K|Sn−2×0 = K0 and K|Sn−2×1 = −K1, which is K1 with the reversed

orientation. Then a knot is slice if and only if it is cobordant to the trivial knot.

It turns out that the set of cobordism equivalence classes of locally-flat sphere

knots of a given dimension form a group, the operation being knot sum, and

these groups were completely classified for n ≥ 4 by Kervaire [9] and Levine
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[13]: Kervaire showed that all even-dimensional knots are slice, while Levine

demonstrated the equivalence of the odd-dimensional cobordism groups with

algebraic cobordism groups of Seifert matrices. Later, Kearton [8] employed the

work of Trotter [19] to demonstrate that this characterization is equivalent to an

algebraic characterization in terms of certain cobordism groups of Blanchfield

pairings on Alexander modules. By contrast, the study of cobordisms of classical

knots S1 →֒ S3 remains an active field of research; see [16].

In general, however, singular points of codimension two piecewise-linear em-

beddings will not be isolated and so the link knots of points may not be locally-

flat. Thus, the issue of simplifying local embeddings in more complex situa-

tions will necessarily involve a cobordism theory for non-locally-flat knots. It

is tempting to declare all such knots null-cobordant by taking cones on them,

since one is working in a category that does not require local-flatness. However,

the goal most in keeping with the original Fox–Milnor treatment is to reduce the

codimension of singularities; thus coning is not a satisfactory solution. Several

more appropriate formulations for a cobordism theory of non-locally-flat sphere

knots present themselves, but we will treat here only the next most general case

after the classical one: cobordisms between knots with a single fixed singular-

ity. This theory has a pleasant reformulation in terms of disk knots, and the

results presented here are crucial to planned future work, in which we study

cobordisms of sphere knots with arbitrary isolated singularities. We shall see

that disk knots are also interesting in their own right, possessing in some sense

the relationship to sphere knots that manifolds with boundary have to closed

manifolds. For example, we shall see that the Blanchfield pairing of an odd-

dimensional disk knot is related to the Farber–Levine pairing of its boundary

knot in much the same way that the intersection pairing of an even-dimensional

manifold is related to the linking pairing on its boundary.

Specifically, we define a disk knot to be a PL locally-flat proper embeddings

L : Dn−2 →֒ Dn. Since the embeddings are proper, taking boundary to bound-

ary, each disk knot L determines a locally-flat sphere knot K on restriction to

the boundary. We will call two disk knots L0, L1 cobordant if there exists a

proper locally-flat PL embedding L : Dn−2 × [0, 1] →֒ Dn × [0, 1] such that

L|Dn−2 × 0 = L0 and L|Sn−2 × 1 = −L1. Note that the restriction of L to

∂Dn−2× [0, 1] provides a cobordism between the boundary sphere knots K0 and

K1. If this cobordism extends to an ambient isotopy of K0 to K1, we will call

L a cobordism rel boundary. This is the case that corresponds to cobordisms of
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sphere knots with fixed isolated singularities: gluing in I times the cone on K0

gives a cobordism of sphere knots that fixes a neighborhood of the singularity.

Conversely, given a cobordism of sphere knots with equivalent lone singularities

and which is standard for a neighborhood of the singularity, we can remove this

neighborhood to obtain a cobordism of disk knots rel boundary.

We should also note that since each disk knot is a slicing disk of its boundary

knot, by studying cobordisms rel boundary of disk knots, we seek to classify

precisely such slicing disks up to their own cobordisms. So in some sense we are

studying a second order of cobordism theory. The results of this theory thus

extend the original Fox–Milnor theory by providing some measure of the number

of ways, up to cobordism, in which a codimension two embedding of a manifold

with isolated singularities can be converted into a locally-flat embedding via

the local replacement of singularities.

We now outline more precisely our main results.

It turns out that cobordisms of disk knots that do not fix the boundary as

well as cobordisms rel boundary of even dimensional disk knots can be classified

immediately via basic arguments:

Proposition 1.1 (Proposition 3.4): If n is even, then any two disk knots

L0, L1 : Dn−2 →֒ Dn are cobordant.

Proposition 1.2 (Proposition 3.3): If n is even, then any two disk knots

L0, L1 : Dn−2 →֒ Dn with isotopic boundary knots are cobordant rel boundary.

Proposition 1.3 (Proposition 3.5): If n is odd, then any two disk knots

L0, L1 : Dn−2 →֒ Dn are cobordant.

This leaves the more challenging case of cobordism rel boundary for odd di-

mensional disk knots. To study this case, we will need to introduce Seifert

matrices for disk knots. As opposed to Seifert matrices for sphere knots, which

arise as certain forms on the middle dimensional homology of Seifert surfaces,

Seifert matrices for disk knots are forms defined only on certain quotient ho-

mology modules (see Section 2, below, for the precise definition). Disk knot

Seifert matrices also differ from those for sphere knots in that, if A is a disk

knot Seifert matrix, the matrix A + (−1)nA′ need not be integrally unimodu-

lar, only rationally so. Nonetheless, algebraic cobordism is well-defined on this

larger class of matrices, and we attain the following conclusion:



Vol. 163, 2008 COBORDISM OF DISK KNOTS 143

Theorem 1.4 (Theorem 3.6): Let L0, L1 : D2n−1 →֒ D2n+1, n > 1, be two

disk knots with the same boundary knot. Let A0 and A1 be Seifert matrices

for L0 and L1, respectively. Then L0 and L1 are cobordant rel boundary if and

only if A0 and A1 are cobordant.

Several interesting corollaries follow:

Corollary 1.5 (Corollary 4.1): Suppose that L0 and L1 are disk knots

D2n−1 →֒ D2n+1, n > 1, such that ∂L0 = ∂L1 = K. Then a necessary

condition for L0 and L1 to be cobordant rel boundary is that the product of the

middle-dimensional Alexander polynomials cL0
n (t)cL1

n (t) be similar in Q[t, t−1]

to a polynomial of the form p(t)p(t−1).

Theorem 1.6 (Theorem 4.3): Let L0 and L1 be two disk knots with com-

mon boundary K, D2n−1 →֒ D2n+1, n > 1. Then there exists a sphere knot

K : S2n−1 ⊂ S2n+1 such that L0 is cobordant to the knot sum (away from the

boundary) L1#K.

Theorem 1.7 (Theorem 4.5): Given any disk knot L : D2n−1 →֒ D2n+1, n > 1,

L is cobordant rel boundary to a disk knot L1 such that πi(D
2n+1−L1) ∼= πi(S

1)

for i < n.

This last theorem tells us that every disk knot is cobordant rel boundary to

a simple disk knot.

The next question to consider is that of which cobordism classes of matrices

arise as the Seifert matrices of disk knots. We will show that all such possi-

ble matrices occur for knots of sufficiently high dimension, but we will also be

interested in the sharper question of which classes arise for disk knots given a

fixed boundary knot. At this point it will be useful to invoke the technology of

Blanchfield pairings and Farber–Levine torsion pairings of Alexander modules.

It is a theorem of Trotter [19] that, for sphere knots, Seifert matrices determine

isometric Blanchfield pairings if and only if they are S-equivalent, and hence it

is possible to restate the cobordism results concerning sphere knots in terms of

properties of these Blanchfield pairings (see Kearton [8]). The Farber–Levine

torsion pairing [15, 2] is less known, though it has been used in certain classifi-

cation schemes of simple knots [10, 3, 4]. We will establish a relation between

these two pairings. In fact, if a disk knot is simple, i.e. its complement has

the homotopy groups of a circle below the “middle” dimension, its Blanchfield
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pairing will completely determine the Farber–Levine pairing of its boundary

knot. In particular, letting C̃ denote the infinite cyclic cover of the disk knot

complement and X̃ the infinite cyclic cover of the complement of its boundary

sphere knot, we can prove the following:

Theorem 1.8 (Theorem 6.1): Given a simple disk knot L : D2n−1 →֒ D2n+1,

the Z[Z]-module Hn−1(X̃) and the Farber-Levine Z-torsion pairing on its Z-

torsion submodule Tn−1(X̃) are determined up to isometry by the isometry

class of the Blanchfield self-pairing on Hn(C̃).

Theorem 1.9 (Theorem 6.2): For a simple disk knot L : D2n−1 →֒ D2n+1,

the Z[Z]-module Tn−1(X̃) and its Farber-Levine Z-torsion pairing are deter-

mined up to isometry by the isometry class of cok(Hn(X̃) → Hn(C̃)) with its

Blanchfield self-pairing.

Corollary 1.10 (Corollary 6.3): For a simple disk knot L : D2n−1 →֒ D2n+1,

the Z[Z]-module Tn−1(X̃) and its Farber–Levine Z-torsion pairing are deter-

mined up to isometry by any Seifert matrix for L.

These theorems, together with a theorem of Kojima [10], will allow us to prove

that, given a fixed boundary knot K of sufficiently high dimension and with no

middle-dimensional 2-torsion, any cobordism class of matrices containing an

element that correctly determines the Farber–Levine pairing of K is realizable

as the matrix cobordism class of a disk knot with K as its boundary knot. See

Theorem 5.10 for a more accurate statement.

In the course of these investigations, we will also need to engage in an in-

depth study of how the Seifert matrix of a disk knot varies with choice of

Seifert surface. In particular, we will prove the following theorem:

Theorem 1.11 (Theorem 7.1): Any two Seifert matrices for a disk knot differ

by a rational S-equivalence.

The organization of this paper is as follows: In Section 2, we present the

basic definitions and technical details concerning Seifert matrices of disk knots.

In Section 3, we begin our investigation and determine when two disk knots

are cobordant. In Section 4, we present the aforementioned corollaries of this

algebraic classification. Section 5 contains the constructions that allow us to

realize the algebraic cobordism matrices geometrically. Sections 6 is dedicated

to the relation between disk knot Blanchfield pairings and their boundary sphere
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knot Farber–Levine pairings. Finally, Section 7 contains the calculations of how

disk knot Seifert matrices change as the Seifert surface is varied.

2. Preliminaries

In this section, we introduce our basic definitions, background material, and

notation.

2.1. Knots, complements, Seifert surfaces, and Alexander modules.

A piecewise linear (PL) locally-flat disk knot is an embedding L : Dn−2 →֒ Dn,

where Dn is the standard PL disk of dimension n. All disk knots will be proper

embeddings, i.e., L(Dn−2) ∩ ∂Dn = L(∂Dn−2), and there is a collar of the

boundary in which the embedding is PL-homeomorphic to (∂Dn, L(∂Dn−2))×I.

The locally-flat condition means that for each point x ∈ L(Dn−2), there is a

neighborhood U such that (U, U ∩ L(Dn−2)) ∼=PL (Bn, Bn−2), the standard

(closed) ball pair. The boundary embedding ∂Dn−2 →֒ ∂Dn is the PL locally-

flat boundary sphere knot K : Sn−3 →֒ Sn−1. Often, we will employ the

standard abuse of notation and confuse the symbols for the maps L and K with

those for their images.

We let C denote the exterior of L, the complement of an open regular

neighborhood of L; C is homotopy equivalent to Dn − L. We let X denote

C ∩ ∂Dn, the exterior of K. Using Alexander duality (respectively, Alexander

duality for a ball; see [17, p. 426]), X and C are homology circles and so possess

infinite cyclic covers that we denote X̃ and C̃. F denotes a Seifert surface

for K, and V denotes a Seifert surface for L, i.e., an oriented bi-collared n−1

dimensional submanifold of Dn whose boundary is the union of L and a Seifert

surface for the boundary knot K. Such Seifert surfaces always exist (see [7]).

Note that H∗(∂V ) ∼= H∗(F ) for ∗ ≤ n − 3.

The groups H∗(X̃), H∗(C̃), and H∗(C̃, X̃), which we call the Alexander

modules, inherit structures as modules over the ring of Laurent polynomials

Λ = Z[Z] = Z[t, t−1] by the action of the covering translation. A Λ-module is of

type K if it is finitely generated and multiplication by t−1 acts as an automor-

phism. Equivalently, a Λ-module of type K is a finitely generated Λ[(t − 1)−1]

module. It is well-known that H∗(X̃) is a torsion Λ-module of type K for ∗ > 0

(see e.g., [15]). Since C is a homology circle, H∗(C̃) is also of type K for ∗ > 0

by Levine [15, Proposition 1.2] since the proof of this proposition only relies on
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C being a homology circle. It then follows from [15, Corollary 1.3] that H∗(C̃),

∗ > 0, is a Λ-torsion module. Hence so is H∗(C̃, X̃) from the reduced long exact

sequence of the pair (in fact, it is similarly of type K by the five lemma applied

to the long exact sequence of the pair under multiplication by t − 1).

A sphere knot Sn−2 →֒ Sn is called simple if πi(X) ∼= πi(S
1) for i ≤ (n−2)/2.

By [12] this is as connected as the complement of a locally-flat knot can be

without the knot being trivial. We similarly define a disk knot Dn−2 →֒ Dn to

be simple if πi(C) ∼= πi(S
1) for i ≤ (n − 2)/2.

Finally, we recall that a pairing of modules ( , ) : A ⊗ B → C is called

nondegenerate if (a, b) = 0 for all b ∈ B implies a = 0 and if (a, b) = 0 for all a ∈

A implies b = 0. We call the pairing nonsingular, if a → (a, ·) is an isomorphism

A → Hom(B, C) and b → (·, b) is an isomorphism B → Hom(A, C). A rational

matrix is nondegenerate and nonsingular if its determinant is not 0. An integer

matrix is considered nondegenerate if its determinant is nonzero and nonsingular

if its determinant is ±1. The pairings we shall be most concerned with are

the Blanchfield and Farber–Levine pairings on Alexander modules. Detailed

descriptions of these pairings are contained below in Section 6.

2.2. The Seifert matrix. The main algebraic invariant in our study of cobor-

dism will be the Seifert matrix of a disk knot. Recall that for an odd-dimensional

sphere knot K : S2n−1 → S2n+1 with Seifert surface F 2n, the Seifert matrix is

traditionally defined as follows: Let Fn(F ) = Hn(F )/torsion, let i− : Fn(F ) →

Fn(S2n+1 − F ) be induced by displacing F along its bicollar in the negative

direction, and let L : Fn(S2n+1 − F ) ⊗ Fn(F ) → Z be the Alexander linking

pairing. Then a Seifert matrix is the matrix (with respect to some chosen

basis) of the pairing Fn(F ) ⊗ Fn(F ) → Z given by x ⊗ y → L(i−(x), y),

Suppose instead we start with a disk knot L : D2n−1 →֒ D2n+1 with Seifert

surface V and boundary Seifert surface F of the boundary sphere knot. Now we

must work with relative pairings. We first observe that Hi(V, F ) ∼= Hi(V, ∂V )

for i ≤ 2n − 2 and H2n−1(V, F ) → H2n−1(V, ∂V ) is onto. So, in particular,

Hn(V, F ) ∼= Hn(V, ∂V ), induced by inclusion, for n ≥ 2.

The appropriate analogue of the Seifert matrix is defined on the cokernel

of the homomorphism induced by inclusion Hn(F ) → Hn(V ), mod torsion.

We denote Ē = cok(Hn(F ) → Hn(V ))/torsion, and we define the disk knot

Seifert matrix to be the matrix θ of the pairing (with respect to some fixed

chosen basis) Ē ⊗ Ē → Z given by x⊗ y → L′′(i−p∗(x), y), where p∗ is induced
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by the natural projection

Fn(V ) → Fn(V, F ),

i− : Fn(V, F ) → Fn(D2n+1 − V, Sn − F ) is again induced by pushing along the

bicollar of the Seifert surface, and L′′ : Fn(D2n+1 − V, Sn − F ) ⊗ Fn(V ) → Z

is the linking pairing induced by Alexander duality on a ball (see [17]). Note

that this is well-defined for y ∈ Ē since this pairing is trivial on elements in

Im(Hn(F ) → Hn(V )).

It is not difficult to check, using the properties of the various pairings involved,

that if we let θ′ denote the transpose of θ, then −θ−(−1)nθ′ is the nondegenerate

intersection pairing T : Ē ⊗ Ē → Z given by T (x ⊗ y) = S(p∗x, y), where

p∗ is as above and S : Fn(V, F ) ⊗ Fn(V ) → Z is the nonsingular Lefschetz–

Poincaré duality pairing. Once again, T is well-defined on Ē since S(x, y) = 0

if y ∈ Im(Hn(F ) → Hn(V )). In particular, we see that det(θ + (−1)nθ′) 6= 0.

We note that there is a correspondence between PL locally-flat sphere knots

and PL-locally-flat disk knots whose boundary knots are trivial: Given such a

disk knot, we can cone the boundary to obtain a locally-flat sphere knot, and

conversely, given a sphere knot, we can remove a ball neighborhood of any point

on the knot to obtain a disk knot with trivial boundary. If we then consider a

Seifert surface for such a disk knot whose boundary Seifert surface is the trivial

disk Seifert surface for the boundary unknot, then Hn(F ) = 0, and the disk

knot Seifert matrix θ will be the classical sphere knot Seifert matrix for the

corresponding sphere knot.

It will be useful for what follows to compare the disk knot Seifert matrix θ

just defined, with certain matrices arising in a similar context in [7]. In [7],

we studied presentations of Alexander modules in terms of matrices denoted R,

τ , and µ. The matrix R represented an isomorphism from what we have here

called Ē to

ker(∂∗ : Hn(V, F ) → Hn−1(F ))/torsion,

where the latter group is given a basis dual to that of Ē by Lefschetz duality.

Equivalently, R is the transpose of the matrix of the pairing T (with respect to

the same basis by which we obtain θ). τ and µ are the matrices of the respective

homomorphisms i−∗ and i+∗ from ker(∂∗ : Hn(V, F ) → Hn−1(F ))/torsion to

ker(∂∗ : Hn(D2n+1−V, S2n−F ) → Hn−1(S
2n−F ))/torsion, induced by pushing

V into its bicollar. The matrices are with respect to the given fixed basis of Ē
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and the dual bases induced on the other groups via Lefschetz and Alexander

duality. More details can be found in [7].

It is not hard to show from the definitions of these matrices and by applying

pairings that

θ = (τR)′ = (−1)nµR.

It is shown in [7] that (−1)q+1(R−1)′τRt − τ ′, is a presentation matrix for

the middle dimensional Alexander module cok(Hn(C̃; Q) → Hn(C̃, X̃ ; Q)) as

a module over Γ = Λ ⊗Z Q = Q[Z], while the matrix 1−t
(R−1)′τt−(−1)q+1τ ′R−1

represents the Blanchfield pairing of this module (see Section 6, below, for

definitions). Both of these matrices are with respect to natural integral bases

within the rational modules.

3. Disk knot cobordism

Let L : Dn−2 →֒ Dn be a disk knot. We define two types of cobordism between

disk knots:

Definition 3.1: Two disk knots L0, L1 are cobordant if there exists a proper

embedding F : Dn−2 × I →֒ Dn × I such that F |Dn−2 × i = Li × i for i = 0, 1

and F |∂Dn−2 × I is a cobordism of the boundary sphere knots K0, K1.

Definition 3.2: Two disk knots L0, L1 are cobordant rel boundary if the bound-

ary knots of L0 and L1 are ambient isotopic and there exists a cobordism from

L0 to L1 that restricts to this isotopy on ∂Dn−2 × I.

N.B. Due to the usual orientation switch of the total space from the bottom

to the top of a cylinder, the embedding L1×1 actually represents the knot −L1,

the mirror image of L1. This, in particular, will be the case when we consider

L1 × 1 = −L1 as a submanifold of Sn = ∂(Dn × I). The orientation of the

embedded knot is itself switched, but this orientation usually plays no role in

higher-dimensional knot theory so we omit further mention.

We first treat cobordisms of even-dimensional disk knots, which can be dis-

pensed with rather quickly, and then move on to odd-dimensional disk knots,

whose theory, at least for cobordisms rel boundary, is much more complicated.



Vol. 163, 2008 COBORDISM OF DISK KNOTS 149

3.1. Cobordism of even-dimensional disk knots.

Proposition 3.3: If n is even, then any two disk knots L0, L1 : Dn−2 → Dn

with isotopic boundary knots are cobordant rel boundary.

Proof. Given two such knots L0, L1, the maps L0×i on Dn−2×i along with the

isotopy H connecting their boundary knots determines a sphere knot Sn−2 →

Sn = ∂(Dn × I) by

(L0 × 0) ∪ H ∪ (L1 × 1) : Sn−2 = (Dn−2 × 0) ∪ (Sn−3) × I ∪ (Dn−2 × 1)

→ Sn = (Dn × 0) ∪ (Sn−1) × I ∪ (Dn × 1).

This is an even dimensional sphere knot and so it is null-cobordant by Ker-

vaire [9]. Any such null-cobordism provides the desired cobordism of the disk

knots.

Proposition 3.4: If n is even, then any two disk knots L0, L1 : Dn−2 → Dn

are cobordant.

Proof. The proof of the existence of a cobordism if the boundary knots are

cobordant is the same as in the last proposition but connecting the boundary

knots is done by their cobordism instead of the trace of an isotopy. However, any

boundary knot of a disk knot is null-cobordant, so, in particular, the boundaries

are cobordant to each other.

3.2. Cobordism of odd-dimensional disk knots. For odd-dimensional disk

knots, all boundary sphere knots are cobordant by [9] since they are all even-

dimensional.

Proposition 3.5: If n is odd, then any two disk knots L0, L1 : Dn−2 →֒ Dn

are cobordant.

Proof. Let K0, K1 be even dimensional boundary knots of L0 and L1. As

noted, all even dimensional knots are nullcobordant by Kervaire [9]. Let us

construct the cobordism G of the boundary knots K0 and K1 as follows: Let

G|∂Dn−2 × [0, 1/4] realize a cobordism of K0 to the unknot. The union of

L0 with this nullcobordism gives a disk knot in (Dn × 0) ∪ (∂Dn × [0, 1/4])

with unknotted boundary knot. Let J0 denote the sphere knot obtained by

filling in this unknotted boundary; we can think of obtaining J0 by taking the

cone pair on the boundary of the disk knot (which will be a locally-flat sphere
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knot since the boundary knot is trivial). Define −J1 similarly by adjoining a

null-cobordism on ∂Dn × [3/4, 1] (recall that the embedding L1 × 1 represents

the disk knot −L1, taking into account orientations on the cylinder as induced

from the 0 end). Now consider the knot −(J0# − J1) = (−J0)#J1, where #

represents knot sum. By removing neighborhoods of two points on the knot, we

can think of this knot as a cobordism between two trivial knots Sn−3 ⊂ Sn−1,

and we can glue this cobordism into ∂Dn × [1/4, 3/4], matching the ends since

all unknots are ambient isotopic. So now we have constructed a cobordism

from K0 to K1, and the knotted sphere in the boundary of Dn × I given by the

union of L0, L1 × 1 = −L1, and the cobordism is J0#((−J0)#J1)#(−J1) =

(J0#J1)# − (J0#J1), which is null-cobordant. Again any null-cobordism now

realizes the cobordism of disk knots.

So there remains only the much more difficult consideration of cobordism of

odd dimensional disk knots rel boundary. As seen in the preceding propositions

and described in more detail below, the problem reduces to finding a null-

cobordism of sphere knots composed of the union of L0 and L1. By [13] the

cobordism class of a sphere knot S2n−1 →֒ S2n+1, n > 1, is determined by its

Seifert matrix. So we are left with the problem of determining Seifert matrices

for disk knots joined along their boundaries. Note that if n = 1, the disk knot

D1 →֒ D3 has trivial boundary and so the problem of determining cobordisms

rel boundary is in this case equivalent to the problem of classifying cobordisms

of classical knots, which remains an unsolved problem. Hence we concentrate

on the cases n > 1, in which the disk knot and sphere knot theories are truly

different (though closely related).

Following Levine in [13], a 2r × 2r integer matrix is called null-cobordant

if it is integrally congruent to a matrix of the form
(

0 N1

N2 N3

)

, where each matrix

Ni is r × r. Two square integer matrices A and B are cobordant if A ⊞−B is

null-cobordant, where ⊞ denotes the block sum of matrices A⊞−B =
(

A 0
0 −B

)

.

In [13], Levine shows that odd-dimensional sphere knots, n > 1 are cobordant

if and only if their Seifert matrices are cobordant.

Our next goal is to prove the following theorem, which will take up the rest

of this section.

Theorem 3.6: Let A0 and A1 be Seifert matrices for disk knots

L0, L1 : D2n−1 →֒ D2n+1, n > 1,
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with the same boundary knot. L0 and L1 are cobordant rel boundary if and

only if A0 and A1 are cobordant.

It is useful to reduce questions about cobordism of matrices to questions about

rational cobordism - we will call a rational 2r×2r matrix A rationally null-

cobordant if it is rationally congruent to a matrix of the form
(

0 N1

N2 N3

)

. This

is equivalent to saying that A is null-cobordant as a pairing of rational vector

spaces Q2r×Q2r → Q given by x×y → x′Ay, i.e. there exists an r-dimensional

subspace of Q2r on which the restriction of the pairing is 0.

Lemma 3.7: Let A be a 2r × 2r integer matrix. Then A is null-cobordant if

and only if it is rationally null-cobordant.

Proof. If A is a 2r × 2r integral null-cobordant matrix, then there is a rank r

direct summand F of Z2r on which A restricts to the 0 bilinear form. Hence

this matrix is also rationally null-cobordant, restricting to the 0 form on F ⊗Q.

Conversely, suppose that A is rationally null-cobordant so that there is an

r-dimensional Q subspace V of Q2r ∼= Z2r ⊗ Q on which A restricts to the 0

bilinear form. Let L be the lattice Z2r ∩ V . This is a free abelian subgroup

of Z2r, in fact a direct summand, since any element of Z2r that has a scalar

multiple in L must also be in L. L must have rank at least r, since given r

linear independent rational vectors in V , there are integral multiples of these

vectors that lie in L (by clearing denominators of the coordinates), and these

scalar multiples remain linearly independent over Q and hence over Z. So A

is the 0 form on a free abelian group of rank ≥ r that is a direct summand of

Z2r .

We say that two square rational matrices A and B are rationally cobor-

dant if A⊞−B is rationally null-cobordant, where ⊞ denotes the block sum of

matrices A ⊞ −B =
(

A 0
0 −B

)

.

Corollary 3.8: Two integral matrices are integrally cobordant if and only

if they are rationally cobordant.

Proof. This is an immediate consequence of Lemma 3.7.

N.B. Even though we will be concerned with rational cobordism classes, the

term Seifert matrix will always refer to the integral Seifert matrix defined

in Section 2 unless explicitly stated otherwise.
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Lemma 3.9: Suppose A and N are square matrices of rational numbers, that N

and A⊞N are rationally null-cobordant, and that some rational linear combina-

tion λN + µN ′ has non zero determinant. Then A is rationally null-cobordant.

Proof. The proof is the same as that of Levine’s for integral null-cobordism [13,

Lemma 1] replacing Z with Q in all steps.

For Seifert matrices of sphere knots

S2n−1 →֒ S2n+1

or disk knots

D2n−1 →֒ D2n+1,

these conditions will be satisfied with λ = 1, µ = (−1)n. For sphere knots, this

is well-known (see [12] or [13]). For disk knots, this can be seen from the fact

that the Alexander polynomials of disk knots are nonzero when evaluated at 1

(see [6] or [7] for details).

Corollary 3.10: For fixed rational λ and µ, the set of rational cobordism

classes of square rational matrices A satisfying det(λA+ µA′) 6= 0 is an abelian

group under block sum, the inverse of the class represented by a matrix A being

the class represented by −A.

Proof. Again, this corollary follows from the lemma as in [13, §3] by replacing

integral statements with rational ones.

Proposition 3.11: Let A, Â be Seifert matrices for the disk knot L. Then A

and Â are integrally cobordant.

Proof. Let V and V̂ be Seifert surfaces with respect to which A and Â are

the integral Seifert matrices. Then it follows from the results of Section 7,

below, that A and B are related by a sequence of rational congruences and

enlargements or reductions of the form

M ↔ M ′ =







M 0 η

0 0 x

ξ x′ y






,

where M is a matrix, η is a column vector, ξ is a row vector, x, x′, and y

are integers, and all “0”s represent the necessary 0 entries to make this matrix

square. Also, either x or x′ is 0 while the other is nonzero. So it suffices to
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show that −M ⊞ M ′ is rationally nullcobordant. If M is a k × k matrix, let Ij

be the j × j identity matrix, and let P =

(

Ik Ik 0
0 Ik 0
0 0 I2

)

. Then

P ′(−M ⊞ M ′)P =











−M −M 0 0

−M 0 0 η

0 0 0 x

0 ξ x′ y











contains a k + 1 × k + 1 dimensional 0 matrix block symmetric with respect to

the diagonal, so it is rationally null-cobordant. The integral cobordism is then

implied by Corollary 3.8.

If we have two disk knots L0, L1 : D2n−1 →֒ D2n+1 with the same boundary

sphere knot, then we can form a sphere knot L0 ∪∂ −L1 : S2n−1 →֒ S2n+1 by

gluing the two knots together along their common boundary, after appropriately

reversing the orientation of L1. Theorem 3.6 will now follow from the following

theorem.

Theorem 3.12: Let A0 and A1 be Seifert matrices for disk knots

L0, L1 : D2n−1 →֒ D2n+1, n > 1,

with the same boundary knot. Then the Seifert matrix of the sphere knot

L0 ∪∂ −L1 is integrally cobordant to A0 ⊞ −A1.

Let us first see that Theorem 3.12 implies Theorem 3.6.

Proof of Theorem 3.6. We can think of L0 ∪∂ −L1 as embedding S2n−1 =

D2n−1∪(S2n−2×I)∪D2n−1 into ∂(D2n+1×I) as the union of L0 on D2n−1×0, L1

on D2n−1×1, and an isotopy of ∂L = K on S2n−2×I. Thus finding a disk knot

cobordism rel boundary from L0 to L1 is equivalent to showing that L0 ∪∂ −L1

is a null-cobordant sphere knot. By [13], a sphere knot is null-cobordant if and

only if its Seifert matrix is null cobordant.

If the matrices A0 and A1 for L0 and L1 are cobordant, then, by Theorem

3.12, the integral Seifert matrix for L0∪∂ −L1, which is cobordant to A0 ⊞−A1,

is nullcobordant. Thus L0∪∂−L1 is nullcobordant. Conversely, if A0 and A1 are

not cobordant, then A0 ⊞−A1 is not integrally nullcobordant and so L0∪∂ −L1

is not null-cobordant.

Now we must work toward Theorem 3.12.
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Let L0 and L1 be two 2n + 1 disk knots with the same boundary knot K,

n > 1, and let K = L0 ∪K −L1. Let V0 and V1 be Seifert surfaces for L0 and

L1 with boundary Seifert surfaces F0 and F1 for K (see [7]). Then there is

a cobordism Υ of Seifert surfaces from F0 to F1 with boundary the union of

F0, −F1, and the trace of an isotopy of K by [14, §3]. We can form a Seifert

surface for K by W = V0 ∪F0
Υ∪−F1

−V1. Since the union of L0 with the trace

of an isotopy of its boundary is isotopic to L0, we will simplify notation by

combining V0 and Υ to form a new V0. So we can consider W to be composed

of Seifert surface V0 and −V1 for L0 and −L1, joined along a single Seifert

surface F for K.

In what follows, we use the isomorphism of the groups H∗(V1) ∼= H∗(−V1) to

simplify notation.

We consider the Mayer–Vietoris sequence

−→ Hn(F )
j

−→ Hn(V0) ⊕ Hn(V1)
ρ

−→ Hn(W )
∂

−→ Hn−1(F )
j′

−→ .

We are first interested in computing ranks of free abelian subgroups, so we can

consider homology groups with rational coefficients (though we omit them from

the notation for clarity). Then there is a splitting Hn(W ) ∼= im(∂) ⊕ cok(j).

Now from the rational long exact sequences of the pairs (Vs, F ), s = 0, 1:

(1) −→ Hn(F )
is−→
H n

(Vs)
ps
−→ Hn(Vs, F )

∂s−→ Hn−1(F )
i′s−→,

Hn(Vs) ∼= cok(is)⊕ im(is), and, furthermore, im(j) ⊂ im(i0)⊕ im(i1), so we can

write cok(j) ∼=
cok(i0)⊕cok(i1)⊕im(i0)⊕im(i1)

im(j)
∼= cok(i0) ⊕ cok(i1) ⊕

im(i0)⊕im(i1)
im(j) .

Now cok(is) is the group on which the Seifert matrix of Ls is defined. We

need to study the other summands (im(i0)⊕im(i1))/im(j) and im(∂) of Hn(W ).

We claim that these two summands have the same dimension.

Let |G| stand for the dimension of the vector space G. Suppose that |Hn(F )| =

m and |Hn(Vs)| = Ms. Then |im(is)| = |coim(is)| = m − | ker(is)|, and

|im(j)| = m − | ker(j)| = m − | ker(i0) ∩ ker(i1)|. So,
∣

∣

∣

∣

im(i0) ⊕ im(i1)

im(j)

∣

∣

∣

∣

= m − | ker(i0)| + m − | ker(i1)| − (m − | ker(i0) ∩ ker(i1)|)

= m + | ker(i0) ∩ ker(i1)| − | ker(i0)| − | ker(i1)|.

Now, since F is a 2n − 1 manifold with sphere boundary, and since Vs is

a 2n-manifold whose boundary is the union of F with a disk, Poincaré du-

ality holds, and, in particular, |Hn(F )| = |Hn−1(F )| = m and |Hn(Vs)| =
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|Hn(Vs, F )| = Ms. Let us fix a basis of Hn−1(F ) and use the standard or-

thonormal inner product with respect to this basis to identify Hn−1(F ) with

Hom(Hn−1(F ); Q) ∼= Hn−1(F ; Q) ∼= Hn(F ; Q). Consider now ker(is). Un-

der this identification, via Poincaré duality, ker(is) = (ker(i′s))
⊥. Indeed, if

x ∈ ker(is) and y ∈ ker(i′s) = im(∂s) so y = ∂sz, then on the intersection

pairing, we have SF (x, y) = SV (is(x), z) = 0; so the identification takes ker(is)

into (ker(i′s))
⊥. But we also have | ker(is)| = m − |im(is)| = m − | ker(ps)| =

m − (Ms − |im(ps)|) = m − (Ms − | ker(∂s)|) = m − (Ms − (Ms − |im(∂s)|)) =

m − | ker(i′s)|, so ker(is) = (ker(i′s))
⊥. Then we compute

∣

∣

∣

∣

im(i0) ⊕ im(i0)

im(j)

∣

∣

∣

∣

= m + | ker(i0) ∩ ker(i1)| − | ker(i0)| − | ker(i1)|

= m + |(ker(i′0))
⊥ ∩ (ker(i′1))

⊥| − |(ker(i′0))
⊥| − |(ker(i′1))

⊥|

= m − |(ker(i′0))
⊥ + (ker(i′1))

⊥|

= | ker(i′0) ∩ ker(i′1)|

= | ker j′|

= |im(∂)|.

Here, the fourth equality uses that, in a vector space X with subspaces Y

and Z, (Y ⊥ + Z⊥)⊥ = Y ∩ Z.

So once again, with rational coefficients, we can write

Hn(W ) ∼= cok(i0) ⊕ cok(i1) ⊕
im(i0) ⊕ im(i1)

im(j)
⊕ im(∂),

where the last two summands have the same dimension. Let us denote

U = im(i0)⊕im(i1)
im(j)

We next observe that the Seifert form is 0 when restricted to

U × (cok(i0) ⊕ cok(i1)) or (cok(i0) ⊕ cok(i1)) × U.

This is true because any element of cok(is) can be represented by a cycle lying

entirely in the interior of Vs and hence of D2n+1 × s in the cobordism, and the

same is true for any translate along a normal vector to the Seifert surface. Also,

we can then find a chain in D2n+1×s whose boundary is the push in the bicollar

of our cycle. Meanwhile, any element of U can be represented by a cycle that

lies in ∂D2n+1 × I, and the same for its translates along the bicollar, and a

choice of chain it bounds in ∂D2n+1 × I. So then clearly the linking numbers

of any such cycles must be 0.
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At last we can prove theorem 3.12.

Proof of Theorem 3.12. Let V0, V1, F , and W be as above. Let B0 and B1

be the Seifert matrices of L0 and L1 corresponding to these Seifert surfaces.

Then by Proposition 3.11, B0 and B1 are rationally cobordant to A0 and A1,

respectively.

Now we consider the Seifert matrix M determined by W and show that it is

rationally cobordant to A0 ⊞ −A1, which will suffice to prove the theorem.

We know that Hn(W ; Q) ∼= cok(i0) ⊕ cok(i1) ⊕
im(i0)⊕im(i1)

im(j) ⊕ im(∂), and

the Seifert pairings on cok(i0) and cok(i1) must be restricted to B0 and −B1

by definition (the negative is due to the reverse of orientation by considering

L1 in D2n+1 × 1 ⊂ D2n+1 × I). Furthermore, these subspaces are orthogonal

under the Seifert pairing since elements of cok(i0) are represented by chains

in V0 ⊂ D2n+1 × 0 ⊂ ∂(D2n+1 × I), while elements of cok(i1) are represented

by chains in V1 ⊂ D2n+1 × 1 ⊂ ∂(D2n+1 × I), so these chains cannot link in

∂(D2n+1 × I) = S2n+1. Similarly, elements in im(i0)⊕im(i0)
im(j) can be represented

by chains in F , that can be pushed into either V0 or V1, and so they do not

link with each other or elements of cok(i0) and cok(i1). Thus M must have the

form (up to rational change of basis and hence rational cobordism)

M =











B0 0 0 X1

0 −B1 0 X2

0 0 0 X3

X4 X5 X6 X7











for some matrices Xi. Note that the diagonal blocks are all square and that the

last two diagonal blocks have the same size by the above dimension calculations.

This is a generalization of the kind of elementary enlargement that we considered

in Proposition 3.11. Set P =

(

Ir Ir 0
0 Ir 0
0 0 I2s

)

, where r = |cok(i0) ⊕ cok(i1)| and

s = | im(i0)⊕im(i0)
im(j) | = |im(∂)|. Then

P′(−B0 ⊞ B1 ⊞ M)P =





















−B0 0 −B0 0 0 0

0 B1 0 B1 0 0

−B0 0 0 0 0 X1

0 B1 0 0 0 X2

0 0 0 0 0 X3

0 0 X4 X5 X6 X7




















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contains an r+s×r+s trivial submatrix symmetric about the diagonal. Hence

it is rationally null-cobordant and M is rationally cobordant to B0⊞−B1, which

in turn is rationally cobordant to A0⊞−A1 using Proposition 3.11. The rational

cobordisms become integral cobordisms by Corollary 3.8.

4. Applications

In this section, we derive some consequences from the theorems of the preceding

section. The first concerns the Alexander polynomials cn(t) defined in [7] and

gives a result similar to that on Alexander polynomials of cobordant sphere

knots [5, 13].

Corollary 4.1: Suppose that L0 and L1 are disk knots D2n−1 ⊂ D2n+1,

n > 1, such that ∂L0 = ∂L1 = K. Then a necessary condition for L0 and

L1 to be cobordant rel boundary is that the product of the middle-dimensional

Alexander polynomials cL0
n (t)cL1

n (t) be similar in Q[t, t−1] to a polynomial of

the form p(t)p(t−1).

Proof. By [7, §3.6] or [6, §3.6] and the calculations in Section 2 above, cLi
n (t) is

in the similarity class in Q[t, t−1] of the determinant of

(Ai + (−1)nA′
i)

−1(Ait + (−1)nA′
i),

where Ai is the Seifert matrix of Li, i = 0, 1. We know that if L0 and L1 are

cobordant rel boundary, then B = A0 ⊞ −A1 is rationally nullcobordant. It

follows then as in [13, §15] that the determinant of Bt + (−1)nB′ is similar to

p̄(t)p̄(t−1) for some polynomial p̄. But clearly the determinant of Bt+(−1)nB′

is equal to ± the product of the determinants of (Ait + (−1)nA′
i), i = 0, 1.

So cL0
n (t)cL1

n (t) ∼ p̄(t)p̄(t−1)
det(A0+(−1)nA′

0
) det(A1+(−1)nA′

1
) . The claim now follows since

1
det(A0+(−1)nA′

0
) det(A1+(−1)nA′

1
) is a unit in Q[t, t−1] by [7].

Since L0 ∪K −L1 is a sphere knot S2n−1 →֒ S2n+1, there is a basis for which

its integral Seifert matrix A is a matrix of integers such that A + (−1)nA′ is

integrally unimodular. Thus each possible obstruction matrix A0 ⊞ −A1 must

be cobordant to such a matrix. We can also state the following converse:

Theorem 4.2: Let A be a matrix of integers such that A+(−1)nA′ is integrally

unimodular, and let L0 be a disk knot D2n−1 ⊂ D2n+1 with Seifert matrix A0.

Then there is a disk knot L1 with the same boundary knot as L0 and such
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that the obstruction Seifert matrix A0 ⊞−A1 to L0 and L1 being cobordant rel

boundary is cobordant to A.

Proof. By [13], there is a sphere knot K : S2n−1 →֒ S2n+1 with Seifert matrix

−A. Let L1 be the knot L0#K, the knot sum taken away from the bound-

ary. Then L1 has Seifert matrix A0 ⊞ −A, and L0 ∪K −L1 has Seifert matrix

cobordant to A0 ⊞ −A0 ⊞ A, which is cobordant to A.

Similarly, we can show the following:

Theorem 4.3: Let L0 and L1 be two disk knots D2n−1 →֒ D2n+1, n > 1, with

common boundary K. Then there exists a sphere knot K : S2n−1 →֒ S2n+1

such that L0 is cobordant to the knot sum (away from the boundary) L1#K.

Proof. Let A0 and A1 be the Seifert matrices for L0 and L1. Then, as above,

A0⊞−A1 is cobordant to an integer matrix B such that B+(−1)nB′ is integrally

unimodular. Let K be a sphere knot with Seifert matrix B, which exists by [13].

Then L1#K has Seifert matrix A1 ⊞B, and L0∪K −(L1#K) has Seifert matrix

A0 ⊞ −A1 ⊞ −B, which is null-cobordant. So A0 is cobordant to A1 ⊞ B, and

the theorem now follows from Theorem 3.6.

Lastly, we obtain some results concerning simple disk knots.

Theorem 4.4: Let K : S2n−2 →֒ S2n, n > 1 be a sphere knot. Then there is

a disk knot L : D2n−1 →֒ D2n+1 such that ∂L = K and πi(D
2n+1 − D2n−1) ∼=

πi(S
1) for i < n.

Proof. By Kervaire [9, Theorem III.6], there exists some disk knot whose bound-

ary is K (all even dimensional knots are null-cobordant). We show that in fact

Kervaire’s construction gives us a knot of the desired type. The argument in

Kervaire’s theorem proceeds as follows (modifying the notation slightly to co-

incide with our own): Let F be a Seifert surface for K. Then it is possible to

construct a manifold V 2n and to embed it into D2n+1 such that V ∩S2n−1 = F

and ∂V = F ∪ D2n+1. This manifold V will be a Seifert surface for L, and

it is obtained from F by adding handles of core dimension ≤ n to F × I, in

order of increasing dimension, to successively kill the homotopy groups of F by

surgery. Then, in particular, after the addition of the 2-handles to F × I, we

obtain a simple connected manifold as the trace of the surgery, and ultimately

H2n−i(V, F ) = 0 for i < n because there are no handles of core dimension > n
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added. Then H2n−i(V, F ) ∼= Hi(V ) for i ≥ 1, so Hi(V ) = 0 for 1 ≤ i < n,

which implies that Hi(V ) = 0 for 1 ≤ i < n.

It now follows that D2n+1 − V is simply-connected by the van Kampen the-

orem: by pushing along the bicollar of V , we can thicken V to a homotopy

equivalent 2n + 1 manifold whose common boundary with the closure of its

complement in D2n+1 is the union of two copies of V glued along L (see [11]).

It then follows from the van Kampen theorem that D2n+1 −V must be simply-

connected, and from Alexander duality for a ball that Hi(D
2n+1 − V ) = 0 for

0 < i < n (see [7, Proposition 3.3] and note that these arguments extend to

integer coefficients).

Now, using the usual cut-and-past construction of the infinite cyclic cover of

D2n+1−L (see [12]), another inductive application of the van Kampen theorem

shows now that the infinite cyclic cover of D2n+1 − L is simply connected, and

the Mayer–Vietoris theorem shows that its homology is trivial in dimensions

< n. So this cover is n− 1-connected, and it follows that the homotopy groups

πi(D
2n+1 − L) vanish for 1 < i < n and that π1(D

2n+1 − L)) ∼= Z.

Theorem 4.5: Given any disk knot L : D2n−1 →֒ D2n+1, n > 1, L is cobordant

rel boundary to a disk knot L1 such that πi(D
2n+1 − L1) ∼= πi(S

1) for i < n.

Proof. First assume n > 2. By the preceding theorem, there exists a disk

knot L0 whose boundary agrees with that of L and which satisfies the required

homotopy conditions. Let A and A0 be the respective Seifert matrices of L and

L0. Then we know that the matrix A⊞−A0 is cobordant to an integral matrix

B such that the determinant of B +(−1)nB′ is integrally unimodular since this

is true for the integral Seifert matrix of the sphere knot L ∪ −L0. By Levine

[13], there exists a sphere knot K : S2n−1 ⊂ S2n+1 whose Seifert matrix is B

and such that πi(S
2n+1−K) ∼= πi(S

1) for i < n. Let L1 be the knot sum L0#K

along the interior. Then L1 satisfies the desired homotopy properties and has

Seifert matrix A0 ⊞ B, which we know is cobordant to A since A ⊞ −A0 ⊞ −B

is cobordant to B ⊞ −B, which is null-cobordant. By Theorem 3.6, L and L1

are cobordant rel boundary.

If n = 2, then [13] provides a K only if B + B′ has signature a multiple of

16. But since L ∪ −L0 is a knot S2 →֒ S4, its Seifert matrices will all satisfy

this property (again see [13]), hence so will A⊞−A0 since signature is a matrix

cobordism invariant. Thus the argument of the preceding paragraph applies

again.
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5. Realization of cobordism classes

Up to this point we have shown that two odd-dimensional disk knots are cobor-

dant rel boundary if and only if their Seifert matrices are cobordant. This leads

to the natural question: which cobordism classes of matrices can be realized

as the Seifert matrices of disk knots? In this section, we answer this question

nearly completely for disk knots of sufficiently high dimension. The one ob-

struction to a complete classification will occur in the case of disk knots whose

boundary knots have 2-torsion in their middle-dimensional Alexander modules.

First we demonstrate that we are truly dealing with a wider variety of objects

than just Seifert matrices of sphere knots.

Proposition 5.1: There exist Seifert matrices for disk knots that are not

cobordant to Seifert matrices of sphere knots. In particular this implies that

there are Seifert matrices for disk knots that are not cobordant to any integer

matrix A such that A + (−1)nA′ is integrally unimodular.

Proof. Suppose, to the contrary, that every disk knot Seifert matrix is cobordant

to some sphere knot Seifert matrix. Let us then fix a disk knot

L : D2n−1 →֒ D2n+1, n even, n > 2,

with some Seifert surface and with Seifert matrix B. By assumption, B is

cobordant to a Seifert matrix C of some sphere knot; this implies that B must

have an even number of rows and columns, since this must be true of C (see,

e.g., [19, p. 178]). By [13], there exists a sphere knot K with a Seifert surface

that realizes the Seifert matrix −C. Therefore, the knot sum K#L with Seifert

surface given as the boundary connected sum of the Seifert surfaces of K and

L will yield the null-cobordant Seifert matrix A = B ⊞ −C. It then follows as

in [13, §15] that the determinant of tA + A′ is the product of ± a power of t

with a Laurent polynomial of the form p(t)p(t−1). In particular, | − A + A′| is

± a square.

Now, by [7, §3] and the calculations of Section 7, below, the middle dimen-

sional Alexander polynomial cn(t) of a disk knot, n even, is given, up to sim-

ilarity, by the determinant of (A + A′)−1(At + A′), which, with our current

assumptions, must thus be of the form p(t)p(t−1)
(p(1))2 (up to similarity). In partic-

ular, we see that the value cn(−1) associated to K#L must be a square. But

we also know that the Alexander polynomial of a direct sum is the product of
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the polynomials so that cK#L
n ∼ cK

n cL
n , where ∼ denotes similarity and we have

labeled the polynomials with their knots in the obvious way. But cK
n (−1) must

be ± a square since K is a sphere knot [12]. So it would follow that cL
n(−1)

must also always be a square. However, this contradicts the calculations in [7,

§3.64] which demonstrate that any odd number can be realized as cL
n(−1) for

some L of our fixed dimension.

Hence we have demonstrated, at least for n even, that there must

exist disk knot Seifert matrices that are not cobordant to sphere knot Seifert

matrices.

However, we do have the following proposition:

Proposition 5.2: Suppose that A is the Seifert matrix of a disk knot

L : D2n−1 →֒ D2n+1 with boundary knot K. Then the matrix B is in the

cobordism class of a Seifert matrix of a disk knot L′ with the same boundary

K if and only if A ⊞ −B is cobordant to the Seifert matrix of a sphere knot

K : S2n−1 →֒ S2n+1.

Proof. If L and L′ are disk knots with the same boundary sphere knot K and

respective Seifert matrices in the cobordism classes of A and B, then we can

form the knot K = L ∪K −L′ by gluing L and −L together, identifying the

boundaries K and −K. By Theorem 3.12, A ⊞ −B is cobordant to the Seifert

matrix of the sphere knot K.

Conversely, suppose that A ⊞ −B is cobordant to the Seifert matrix of some

sphere knot K. Then −A ⊞ B will be the Seifert matrix of −K. Form L′ =

L#−K, the internal knot sum. The Seifert matrix of this L′ will be the sum of

A with the Seifert matrix of −K and hence will be cobordant to A ⊞ −A ⊞ B,

which is cobordant to B.

This proposition tells us how to recognize cobordism classes of Seifert matrices

for disk knots with a given boundary sphere knot provided that we already

have a cobordism class of Seifert matrices with which to compare.

This is a nice start, but we would like to find a way to determine which cobor-

dism classes are realizable starting only with information about the boundary

knot. It will turn out that the crucial datum is supplied by the isometry class

of the Farber–Levine torsion pairing on Tn−1(X̃), the Z-torsion subgroup of

Hn−1(X̃), so long as this group has no 2-torsion. To obtain these results, we

will first establish in Theorem 5.7, below, necessary and sufficient conditions
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for a cobordism class of a matrix to be the cobordism class of the matrix of a

disk knot. This leads to Theorem 5.10, which classifies the matrix cobordism

classes of Seifert matrices for disk knots with a given boundary knot, assuming

the given torsion conditions.

Let us first examine some necessary conditions for a matrix θ to be a

Seifert matrix for a disk knot. We know from Section 2 that the matrix

−θ′ + (−1)n+1θ is the transpose of the nondegenerate intersection pairing T

on Ē = cok(Hn(F ) → Hn(V ))/torsion. In keeping with [7], we have also called

the pairing matrix R, and to emphasize the interdependence, we will some-

times write R = Rθ. We also described in Section 2 a matrix τ such that

θ = (τR)′. Since R is invertible, τ is also determined by θ as τθ = θ′R−1
θ =

θ′(−θ′ + (−1)n+1θ)−1. Unfortunately, we cannot simplify this further since in

general θ won’t be invertible.

A necessary condition then on θ is that τθ = θ′R−1
θ = θ′(−θ′ + (−1)n+1θ)−1

must be integral since τ ′ is an integer matrix. Also, we must have (R−1
θ )′τθRθ =

(−θ + (−1)n+1θ′)−1θ′ integral, since this is, up to sign, the matrix µθ, where µ

is also as described in Section 2.

We note one implication of these requirements.

Proposition 5.3: Let θ be the Seifert matrix of a disk knot D2n−1 →֒ D2n+1.

If n is odd, or if n is even and det(Rθ) 6= 0 mod 2, then θ must be even

dimensional (have an even number of rows and columns).

Proof. If n is odd, then Rθ = −θ′+θ is skew-symmetric. But Rθ is nondegener-

ate, so it must have even dimension. If n is even and det(Rθ) = det(θ′ + θ) 6= 0

mod 2, then also det(θ′ − θ) 6= 0 mod 2, so again θ must be even dimensional

since θ′ − θ is skew symmetric and nondegenerate.

We next examine the relationship between θ and the Blanchfield pairing on

the cokernel of Hn(X̃) → Hn(C̃) mod Z-torsion. Once we have seen that disk

knots with isometric Blanchfield pairings have cobordant Seifert matrices, we

will be able to invoke some results on the realizability of Blanchfield pairings

from [7] in our study of the realizability of cobordism classes of Seifert matrices.

A review of the basic definitions and properties of the relevant Blanchfield

pairings is presented in Section 6, below, in which we study to what extent the

Blanchfield pairing of a disk knot determines its boundary knot. In this section,
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we take these results on Blanchfield pairings as given and complete our study

of Seifert matrices.

Let us denote cok(Hn(X̃) → Hn(C̃)) mod Z-torsion by H̄ and recall some

facts from [7, §3.6] (N.B. we have altered the notation from [7] in the hopes of

introducing simpler and more consistent notation). It is shown there that for a

disk knot L : D2n−1 →֒ D2n+1,

H̄ ⊗ Q ∼= Hn(C̃; Q)/ ker(p : Hn(C̃; Q) → Hn(C̃, X̃; Q))

is presented as a Γ = Q[Z]-module by the matrix (−1)n+1(R−1)′τRt−τ ′. Recall

that these matrices are given in terms of bases of the integer homology groups

of the Seifert surface. Also with respect to these integral bases (which induce

a basis for H̄ ⊗ Q), the matrix of the self-Blanchfield pairing on H̄ is given by
t−1

(R−1)′τ−(−1)n+1tτ ′R−1 . Using the integrality of the appropriate bases, it is not

hard to see from [7, §3.6] that the same matrix M = (−1)n+1(R−1)′τRt − τ ′

in fact presents H̄ as a Λ-module, and the matrix t−1
(R−1)′τ−(−1)n+1tτ ′R−1 also

represents the integral Blanchfield pairing H̄ ⊗ H̄ → Q(Λ)/Λ.

We will prove that Seifert matrices of disk knots with isometric Blanchfield

pairings are cobordant.

Theorem 5.4: Let θ1 and θ2 be Seifert matrices for disk knots

L1, L2 : D2n−1 →֒ D2n+1.

Suppose that L1 and L2 have isometric Blanchfield self-pairings on H̄1
∼= H̄2.

Then θ1 and θ2 are cobordant, in fact rationally S-equivalent.

Proof. The proof will require a few lemmas.

By using some slightly modified machinery of Trotter [19], we will actually

work mostly with the rational Blanchfield pairing, which will simplify things

considerably. For one thing, we can note that M = (−1)n+1(R−1)′τRt − τ ′ =

(R−1)′((−1)n+1θ′t − θ) and t−1
(R−1)′τ−(−1)n+1tτ ′R−1 = R 1−t

θ′−(−1)n+1tθ
R′. So, we

see that up to a change of basis over Q, the presentation matrix and Blanch-

field pairing matrix of the Γ-module H̄ ⊗ Q are simply ((−1)n+1θ′t − θ) and
1−t

θ′−(−1)n+1tθ
.

We will also need the notion of rational S-equivalence. For two square rational

matrices A and B, we say that A is a rational row enlargement of B and B is
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a rational row reduction of A if

A =







0 0 0

1 x u

0 v B






,

where x and 1 are rational numbers, v is a column vector, and everything else is

made to make the matrix square. Rational column enlargements and reductions

are defined similarly with the transposed form. Rational S-equivalence is then

the equivalence relation generated by rational row and column enlargements and

reductions and by rational congruence. Two rationally S-equivalent matrices are

rationally cobordant by the same arguments as in Proposition 3.11.

We will need the following basic lemma.

Lemma 5.5: For any disk knot Seifert matrix θ, either θ is rationally S-equiva-

lent to a rationally nonsingular matrix or (−1)n+1θ′t−θ presents the Γ-module

0.

Proof. The proof can be obtained from minor modifications to the proof of [19,

Lemma 1.4], using also minor modifications of the work on pages 484–485 of

[18].

We will see in the next lemma that two rationally S-equivalent matrices

present the same Γ-module.

Lemma 5.6: If θ1 and θ2 are rationally S-equivalent, then they determine iso-

metric Γ-modules with self-Blanchfield pairings.

Proof. The proofs of Lemmas 1.4 and 1.2 of [19] apply rationally. It should

be noted that our presentation matrix and pairing matrix defer slightly from

those in [19]. One reason is that we employ a different convention for turning

a matrix into a pairing matrix (we use a1 × a2 → a′
1Mā2, while Trotter uses

a1 × a2 → ā′
2Ma1). The other difference is the appearance of 1

t−1 in Trotter’s

presentation matrices, but, as noted in [19, p. 179], these make no difference as

multiplication by t− 1 is an automorphism of knot modules. So the translation

to Trotter’s algebraic language from the topological language can be made via

some isomorphisms and convention switches, and so his results apply to our case.

(One should also note carefully that what he calls Λ is our Z[t, t−1, (1 − t)−1],

while our Λ is denoted there by Λ0.)



Vol. 163, 2008 COBORDISM OF DISK KNOTS 165

We now need to consider Trotter’s trace function [19]: Since the rational

functions, i.e. elements of Q(Λ), can be written in terms of partial fractions,

Q(Λ) splits over Q into the direct sum of Γ[(1 − t)−1] and the subspace P

consisting of 0 and proper fractions with denominators prime to t and 1 − t.

The trace χ is then defined as the Q-linear map to Q determined by χ(f) = f ′(1)

if f ∈ P and 0 if f ∈ Γ[(1 − t)−1]. The ′ here denotes derivative with respect

to t. This then induces a map Q(Γ)/Γ ∼= Q(Λ)/Γ → Q. In particular, by

composing χ with the Blanchfield pairing, one obtains a rational scalar form

(H̄ ⊗ Q) × (H̄ ⊗ Q) → Q.

It is clear that two Seifert matrices that induce isometric Blanchfield forms

induce isometric rational scalar forms.

Now by [19, Lemma 2.7b], for f ∈ P , χ((t − 1)f) = f(1). And also, as

in [19, Lemma 2.10], ∆ has degree equal to the dimension of θ and nonzero

constant term, plus we know it is prime to (t − 1), so by Cramer’s rule, each

term in (θ′ − (−1)n+1tθ)−1 lies in P . Thus χ applied to t−1
θ′−(−1)n+1tθ

is give by

evaluation of 1
θ′−(−1)n+1tθ

at 1, so we just get 1
θ′−(−1)n+1θ

as the matrix of the

rational scalar pairing.

It follows as in the proof of [19, 2.11], using [19, 2.5 and 2.10], which also

hold rationally, that a choice of Q-vector space basis in an isometry class of a

finitely generated Λ[(t − 1)−1]-module H0 with a rational scalar form deter-

mines a “Seifert matrix” θ0 and that our given H̄⊗Q with rational scalar form

is isometric to H0 if and only if there is a basis for H̄ ⊗Q with respect to which

its Seifert matrix θ is equal to θ0: The existence of an isometry implies that

there are bases with respect to which both scalar forms have the same matrix

S of [19], and, with respect to these bases, (1 − t)−1 acts by the same matrix

γ, but then the equations in [19] determine both θ0 and θ by γS−1. Finally, by

[19, Proposition 2.12], this implies that two rationally nonsingular Seifert ma-

trices determine isometric rational scalar forms if and only if they are rationally

congruent.

We can now complete the proof of Theorem 5.4. By hypothesis θ1 and θ2

determine isometric Blanchfield forms, hence they induce isometric scalar forms.

Furthermore, by Lemma 5.5, θ1 and θ2 are rationally S-equivalent to Seifert

forms, say θ̂1 and θ̂2, respectively, that are rationally nonsingular and which,

by Lemma 5.6, still determine isometric scalar forms. By the immediately

preceding discussion, θ̂1 and θ̂2 are rationally congruent. It follows that θ1 and
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θ2 are rationally S-equivalent and hence, in particular, cobordant as seen in the

proof of Proposition 3.11.

This completes the proof of Theorem 5.4.

The relationships we have just established between Seifert matrices and

Blanchfield pairings turn out to be just what we need to realize rational cobor-

dism classes of Seifert matrices.

Theorem 5.7: Let θ be any square matrix satisfying the necessary conditions

to be the integral Seifert matrix of a disk knot D2n−1 →֒ D2n+1, i.e., such that

1. Rθ = −θ′ + (−1)n+1θ is nondegenerate, and

2. τθ = θ′(−θ′ +(−1)n+1θ)−1 and µθ = (−θ + (−1)n+1θ′)−1θ′ are integral

matrices.

Then for any n > 2, there is a disk knot D2n−1 →֒ D2n+1 whose Seifert matrix

is cobordant to θ.

Proof. Given such a θ, it determines a Λ-module H̄ with a (−1)n+1-Hermitian

pairing to Q(Λ)/Λ by the matrices

(−1)n+1(R−1)′τRt − τ ′ and
t − 1

(R−1)′τ − (−1)n+1tτ ′R−1

as in the discussion earlier in this section (see also [7, §3.6.3]). Note that H̄ is

Z-torsion free by the same arguments as in [19, Lemma 2.1]. By [7, Proposition

3.21], there exists a simple disk knot L realizing this module and pairing with

H̄ = Hn(C̃) and also with simple boundary knot such that Hn−1(X̃) is Z-

torsion. By Theorem 5.4, any Seifert matrix for L is cobordant to our given θ;

in fact it is rationally S-equivalent to it.

So, at this point we have demonstrated that, for n > 2, every allowable cobor-

dism class can be realized by 1) showing that a potential Seifert matrix deter-

mines a Blanchfield pairing, 2) constructing every possible Blanchfield pairing,

and 3) showing that a Blanchfield pairing determines its Seifert matrices up to

rational S-equivalence. So by constructing every possible pairing, we construct

every possible cobordism class. However, we have not said anything yet about

what boundary knots we get. The constructions of Theorem 5.7 give only simple

disk knots whose boundaries are simple sphere knots and such that Hn−1(X̃)

is Z-torsion (this follows from the construction in [7, Proposition 3.21] and the

construction in [15, §12] that it is modeled after). Such sphere knots are called
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finite simple. In this special case, we can say a lot immediately. We will

show in Section 6 below that in this situation the Blanchfield pairing on Hn(C̃)

completely determines the Farber–Levine torsion pairing on Hn−1(X̃). In fact,

we will prove the following

Theorem 5.8 (Corollary 6.3): For a simple disk knot L : D2n−1 →֒ D2n+1, the

Λ-module Tn−1(X̃) and its Farber–Levine Z-torsion pairing are determined up

to isometry by any Seifert matrix for L.

In this situation, we will say that the Seifert matrix induces the Farber–

Levine pairing.

We can now apply the following theorem of Kojima [10] (which we have

translated into our notation):

Theorem 5.9 (Kojima): Suppose that K0 and K1 are two finite simple sphere

knots S2n−2 → S2n, n ≥ 5, Hn−1(X̃0) ∼= Hn−1(X̃1) contains no 2-torsion, and

the Farber-Levine pairings on Hn−1(X̃0) and Hn−1(X̃1) are isometric, then K0

and K1 are isotopic knots.

Putting this theorem together with the results of Section 6, quoted above,

we see that, for n ≥ 5, the following statement holds: if a Blanchfield pairing

on Hn(C̃) induces a Tn−1(X̃) with no 2-torsion, then this Blanchfield pairing

determines a unique finite simple sphere knot S2n−2 →֒ S2n which must be

the boundary knot of any simple disk knot possessing this Blanchfield pairing

and having a finite simple boundary knot. In particular since Seifert matrices

determine Blanchfield pairings, the Seifert matrix of a simple disk knot with

finite simple boundary knot determines the boundary knot uniquely, so long as

Hn−1(X̃) = Tn−1(X̃) has no 2-torsion.

We can now immediately generalize this to prove the following theorem about

realizability of cobordism classes of Seifert matrices for more arbitrary boundary

knots:

Theorem 5.10: Let K : S2n−2 →֒ S2n, n ≥ 5, be a sphere knot with comple-

ment X such that Tn−1(X̃) contains no 2-torsion. Then there exists a disk knot

L : D2n−1 →֒ D2n+1 with boundary knot K and with Seifert matrix in a given

cobordism class [θ] if and only if there is an integral matrix θ in the class such

that

1. Rθ = −θ′ + (−1)n+1θ is nondegenerate,
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2. τθ = θ′(−θ′ +(−1)n+1θ)−1 and µθ = (−θ + (−1)n+1θ′)−1θ′ are integral

matrices, and

3. the Farber–Levine pairing induced by θ is isometric to the Farber–

Levine pairing on Tn−1(X̃).

Proof. Suppose we have such a knot L and its cobordism class of Seifert matrices

[θ]. We show that there is a Seifert matrix in the cobordism class satisfying the

listed properties: We know that the first two requirements are always necessary

for a Seifert matrix. For the third, recall that by Theorem 4.5, any disk knot is

cobordant rel boundary to a simple disk knot, and by Theorem 3.6, any two such

disk knots have cobordant Seifert matrices. By Theorem 5.8, any Seifert matrix

of a simple disk knot determines the Farber–Levine pairing on Tn−1(X̃) of the

boundary knot up to isometry. So there is a Seifert matrix in the cobordism

class [θ] that induces the correct Farber–Levine pairing (up to isometry).

Conversely, given a θ that meets the above requirements, Theorem 5.7 and

its proof assure us that we can construct a simple disk knot L1 with finite

simple boundary whose Seifert matrices fall in the cobordism class [θ] of θ and

induce the given Farber–Levine pairing on the boundary knot. Now let L0 be

any simple disk knot with our given K as boundary. Such a knot always exists

since K is null-cobordant by its dimensions and [9], and there is a cobordism rel

boundary of any disk knot to a simple disk knot by Theorem 4.5. Let θ0 be any

Seifert matrix of L0, and note that θ0 determines the Farber–Levine pairing

on Tn−1(X̃). Also, again by Theorem 5.7, there is a simple disk knot with

torsion simple boundary θ0 whose Seifert matrices fall in the cobordism class [θ0]

and induce the given Farber–Levine pairing. Since L1 and L0 are both simple

disk knots with torsion simple boundaries K1 and K0 and since the boundary

modules Hn−1(X̃0) and Hn−1(X̃1) are Farber–Levine isometric by construction

and contain no 2-torsion by assumption, Kojima’s Theorem [10] implies that

K0 and K1 are isometric. So now let us form the sphere knot K = L1 ∪K0
−L0.

By Theorem 3.12, the Seifert matrix of K is cobordant to θ ⊞ −θ0. Finally,

we form the connected sum away from the boundary L = L0#K. Then L has

Seifert matrix cobordant to θ0 ⊞ (θ ⊞−θ0) = θ, and it is our desired knot.

We note that the statement of the theorem only guarantees that some ele-

ment in the cobordism class determines the proper Farber–Levine pairing, not

all elements. This is really the best that can be hoped for since given an ar-

bitrary disk knot, it is possible that Tn−1(X̃) may not be in the image of ∂∗
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or there may be elements in Tn−1(X̃) that are in the image of Tn(C̃, X̃). The

Farber–Levine pairing on such elements clearly won’t be determined by the

Seifert matrix. However, as noted in the proof, there is always a cobordism

rel boundary to a simple disk knot for which the entirety of the Farber–Levine

pairing is determined by the Seifert matrix, and we know that such a cobordism

keeps the Seifert matrix in its cobordism class. While this argument shows that

a cobordism class does not determine a Farber–Levine pairing, we make the

following conjecture:

Conjecture: The cobordism class of any integer matrix satisfying

1. Rθ = −θ′ + (−1)n+1θ is nondegenerate,

2. τθ = θ′(−θ′ +(−1)n+1θ)−1 and µθ = (−θ + (−1)n+1θ′)−1θ′ are integral

matrices

determines a unique element in the Witt group of Z-linear conjugate self-adjoint

(−1)n+1-symmetric nonsingular pairings to Q/Z on finite Λ[(t−1)−1]-modules.

Our realization theorem makes no conclusions about knots for which Tn−1(X̃)

possesses 2-torsion. This is because finite simple even-dimensional sphere knots

are not determined entirely by their Farber–Levine pairings, and so the previous

proof breaks down; we cannot apply the theorem of Kojima. It was shown by

Farber in a series of papers culminating in [3, 4] (see also [2]) that in this case

there is also an even-torsion pairing on the stable homotopy groups σn+1(X̃)

that plays a role in the classification. In fact, Farber shows that such knots

are classified completely by the algebraic invariants in their Λ-quintets. It

remains unclear whether the Seifert matrices and/or Blanchfield pairings of a

simple disk knot are sufficient to determine the Λ-quintets of their boundary

knots, so we cannot yet broaden Theorem 5.10 to include realizability for all

knots. An alternative procedure would be to show that all knots constructed

in Theorem 5.7 that give the same Farber–Levine pairing on the boundary just

happen to have the same actual boundary knot. If so, the proof of Theorem

5.10 would apply without the need to invoke a broader classification theorem.

However, we have not yet been able to establish this either.

6. Blanchfield pairings determine Farber–Levine pairings

In this section, we will establish that for a simple disk knot of odd dimension

D2n−1 →֒ D2n+1, the Farber–Levine Z-torsion self-pairing of the boundary
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knot, Tn−1(X̃) ⊗ Tn−1(X̃) → Q/Z, is determined completely by the module

H̄ = cok(Hn(X̃) → Hn(C̃))/(Z-torsion) and its self-Blanchfield pairing. This

result was used in the previous section in conjunction with the main theorem

of [10] to recognize the boundary knots of disk knots we have constructed.

We will begin by demonstrating that the module Hn−1(X̃) and the Farber–

Levine pairing on its Z-torsion submodule Tn−1(X̃) are determined by the self-

Blanchfield pairing on Hn(C̃). These pairings will be defined in detail below.

Theorem 6.1: Given a simple disk knot D2n−1 →֒ D2n+1, the module

Hn−1(X̃) and the Farber–Levine Z-torsion pairing on Tn−1(X̃) are determined

up to isometry by the isometry class of the Blanchfield self-pairing on Hn(C̃).

In the proof we develope a formula relating the two pairings based upon the

geometry of chains. This will allow us to prove that the isometry class of the

latter completely determines the isometry class of the former. We then show

that, in fact, H̄ , which algebraically corresponds to the quotient of Hn(C̃) by

its annihilating submodule, is sufficient to determine Tn−1(X̃) and its Farber–

Levine pairing.

We first undertake some preliminary work.

To simplify things marginally, observe that ∂C̃ = X̃ ∪S2n−2×R D2n−1 × R

so that, for n ≥ 2, the map induced by inclusions Hn−1(X̃) → Hn−1(∂C̃) is

an isomorphism and Hn(X̃) → Hn(C̃) is an epimorphism. It therefore fol-

lows from the five lemma applied to the exact sequences of the pairs that

Hn(C̃, X̃) → Hn(C̃, ∂C̃) is an isomorphism. For n = 1, X ∼h.e. S1, so

X̃ ∼h.e. ∗. In this case there is no Farber–Levine pairing of interest, so we

will shall always assume n ≥ 2. We will work with ∂C̃ or X̃ as convenient, but

using these isomorphisms, we can assume that all relevant chains are actually

contained in X̃.

For a simple disk knot D2n−1 →֒ D2n+1, Hi(C̃) = 0 for 0 < i < n due

to the connectivity assumptions. Now, as observed in [15] (and holding for

any regular covering of a compact piecewise-linear n-manifold with boundary),

H∗(C̃) ∼= H2n+1−∗
e (C̃, ∂C̃), the conjugate of the cohomology of the cochain com-

plex HomΛ(C∗(C̃, ∂C̃), Λ). Similarly, H∗(C̃, ∂C̃) ∼= H2n+1−∗
e (C̃), the conjugate

of the cohomology of the cochain complex HomΛ(C∗(C̃), Λ). It now follows

from Proposition 2.4 of [15] and this generalization of Poincaré duality that
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there exist short exact sequences

0 −→ Ext2Λ(Hn−2(C̃), Λ) −→ Hn+1(C̃, ∂C̃) −→ Ext1Λ(Hn−1(C̃), Λ) −→ 0

0 −→ Ext2Λ(Hn−1(C̃), Λ) −→ Hn(C̃, ∂C̃) −→ Ext1Λ(Hn(C̃), Λ) −→ 0.

By the connectivity assumptions on C̃, these imply that Hn+1(C̃, ∂C̃) =

Hn+1(C̃, X̃) = 0, and Hn(C̃, ∂C̃) ∼= Ext1Λ(Hn(C̃), Λ). Since Hn(C̃) is of type

K (it is finitely generated and t−1 acts as an automorphism), Ext1Λ(Hn(C̃), Λ)

is Z-torsion free by [15, Proposition 3.2], hence so is Hn(C̃, ∂C̃) ∼= Hn(C̃, X̃).

So we have shown that there is an exact sequence of Alexander modules

0 −→ Hn(X̃) −→ Hn(C̃)
p∗

−→ Hn(C̃, X̃)
∂∗−→ Hn−1(X̃) −→ 0

and that Hn(C̃, X̃) has no Z-torsion. We seek first to determine how the self-

Blanchfield pairing on Hn(C̃) determines the Farber–Levine Z-torsion pairing

[ , ] : Tn−1(X̃) ⊗ Tn−1(X̃) → Q/Z, where Tn−1(X̃) is the Z-torsion subgroup of

Hn−1(X̃).

Now we recall the definitions of the various pairings involved. The following

discussion integrates the relevant work from papers of Blanchfield [1] and Levine

[15] and adapts it, where necessary, to the case of disk knots.

We can assume that C̃, the infinite cyclic cover of the exterior of the disk

knot L : DN−2 →֒ DN , is triangulated equivariantly so that C∗(C̃, ∂C̃) is a

free left Λ-module with basis given by the cells of C not in ∂C. Then C∗(C̃)

can be taken as the free left Λ-module with basis given by the dual cells to

the given triangulation of C [15]. One then defines an intersection pairing

of left Λ-modules to Λ at the chain level by setting a · b =
∑

i S(a, tib)ti for

a ∈ Ci(C̃), b ∈ CN−i(C̃, ∂C̃), where S is the ordinary intersection pairing of

chains. The pairing · descends to a well-defined pairing of homology modules. It

also follows from the properties of the ordinary intersection form on a manifold

that if x ∈ Hi(C̃) and y ∈ HN−i(C̃), then x ·p∗(y) = (−1)i(N−i)y · p∗(x), where

p∗ : Hn(C̃) → Hn(C̃, ∂C̃).

From here, it is possible to define a linking pairing, the Blanchfield pairing,

V : Wi(C̃)⊗WN−1−i(C̃, ∂C̃) → Q(Λ)/Λ, where Wi(X) is the submodule of weak

boundaries of Ci(X), i.e., those chains c such that λc bounds for some λ ∈ Λ,

and Q(Λ) is the field of rational functions. If a ∈ Wi(C̃), b ∈ WN−1−i(C̃, ∂C̃),

and A ∈ Ci+1(C̃) with ∂A = αa for some α ∈ Λ, then V (a, b) = 1
α
A · b by

definition. Note that this linking number is well-defined to Q(Λ) at the chain
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level. However, in order to descend to a well-defined map on homology classes

with torsion, it is necessary to consider the image of V in Q(Λ)/Λ. In the

case of interest to us, the relevant pairing will be V : Hn(C̃) ⊗ Hn(C̃, ∂C̃) →

Q(Λ)/Λ when N = 2n + 1 (recall that both modules are Λ-torsion so all cycles

weakly bound). By [15, §5], since Hn(C̃, ∂C̃) is Z-torsion free, the pairing is

nonsingular in the sense that its adjoint provides an isomorphism Hn(C̃, ∂C̃) →

HomΛ(Hn(C̃), Q(Λ)/Λ) (the overline on H̄n(C̃, ∂C̃) indicates that we take the

module with the conjugate action of Λ under the antiautomorphism t → t−1,

reflecting the fact that V will be conjugate linear, since · is). This pairing

determines a self-pairing 〈 , 〉 on Hn(C̃) by 〈a, b〉 = V (a, p∗(b)). This pairing

is (−1)n+1-Hermitian, i.e., 〈a, b〉 = (−1)n+1〈b, a〉, and it is nondegenerate on

coim(p∗).

It requires more work to define the Farber–Levine Z-torsion pairing. These

are pairings [ , ] : Ti(X̃) ⊗ TN−i−2(X̃) → Q/Z, where Tj(X̃) is the Z-torsion

submodule of Hj(X̃) and X has dimension N . We will specialize immediately

to our case of interest where N = 2n, i = n − 1, and Tn−1(X̃) is the the

torsion Alexander module of the boundary knots of a simple disk knot. In [15],

Levine begins with a sophisticated definition via homological algebra and then

produces an equivalent geometric formulation. We will be more concerned with

the geometric formulation, but there is one intermediate algebraic construction

that remains necessary.

We first need to choose two integers, though the final outcome will be inde-

pendent of the choice modulo the restrictions on choosing. Let m be a positive

integer such that mT n+1
e (X̃) = 0, where T n+1

e (X̃) is the torsion subgroup of

Hn+1
e (X̃). By generalized Poincaré duality, T n+1

e (X̃) ∼= Tn−1(X̃), so m kills

this module as well. Such an m exists since Tn−1(X̃) is finite by [15, Lemma

3.1]. Next, let Λm = Λ/mΛ = Zm[Z], and let θ = Λ/(tk − 1), where k is a posi-

tive integer chosen large enough so that tk−1 annihilates Hn
e (X̃ ; Λm). Such a k

exists since Hn
e (X̃ ; Λm) ∼= Hn(X̃ ; Λm) by generalized Poincaré duality, and this

module is also finite, again by [15, Lemma 3.1] and the argument on the bottom

of page 18 of [15]. Since Hn
e (X̃ ; Λm) is finite and t acts isomorphically, tk = 1

for some integer k > 0. Hence tk − 1 annihilates the module for this choice of

k. Note that tk − 1 also kills Hn(X̃ ; Λm) since tk − 1 = t−k − 1 = −t−k(tk − 1)

and t acts automorphically.
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By the same arguments, we can find a k such that tk − 1 annihilates

Hn(C̃; Λm). Since Hn+1(C̃, X̃) = 0, we also get Hn(C̃, X̃; Λm) = 0 because, as

an abelian group, Hn+1(C̃, X̃; Λm) = Hn+1(C̃, X̃)⊗Z Zm (recall that Hn(C̃, X̃)

is Z-torsion free). So Hn(X̃ ; Λm) maps monomorphically into Hn(C̃; Λm) in the

long exact sequence of the pair (C̃, X̃) with Λm coefficients, so this k suffices

to kill Hn(X̃ ; Λm) as well. In other words, for any k such that tk − 1 kills

Hn(C̃; Λm), the same choice of k gives a tk − 1 that also kills Hn(X̃; Λm).

The geometric part of the construction now finds a pairing { , } : Tn−1(X̃)⊗

Tn−1(X̃) → I(θ)/θ, where I(θ) is the Λ-injective envelope of θ. But for a finite

Λ-module A, HomΛ(A, I(θ)/θ) = HomΛ(A, (Q ⊗Z θ)/θ)
e
∼= HomZ(A, Q/Z), so it

is possible to define [ , ] as the composition of { , } with these isomorphisms.

The pairing { , } can be described in the following geometric manner: Suppose

that z and w are cycles representing elements of Tn−1(X̃). By the choice of m,

mz is null-homologous, so mz = ∂z′ for some z′ ∈ Cn(X̃). Then (tk − 1)z′ is

null-homologous mod m since we know that tk−1 annihilates Hn(X̃; Λm). Thus,

we can write (tk − 1)z′ = ∂z′′ + mz0 for some z′′ ∈ Cn+1(X̃) and z0 ∈ Cn(X̃).

Then one sets {z, w} to be the image of (−z′′ · w)/m, which is in Γ = Λ ⊗ Q,

under the composition Γ → Q ⊗ θ ⊂ I(θ) → I(θ)/θ. It turns out that this

pairing is independent of the choices involved and descends to a well-defined

map on the homology torsion subgroups. See [15] for more details.

Using this geometric definition, we will prove that the middle dimensional

pairing { , } : Tn−1(X̃) ⊗ Tn−1(X̃) → I(θ)/θ can be expressed in terms of the

linking pairing V : Hn(C̃) ⊗ Hn(C̃, ∂C̃). In the following computations, all

pairings are defined at the chain level, so there is no ambiguity. Consider cycles

z, w representing elements in Tn−1(X̃). Let z′, z′′, z0 ∈ C∗(X̃) be as defined

above. We need to reformulate (−z′′ · w)/m, where the intersection product is

that in X̃.

Since ∂∗ : Hn(C̃, X̃) → Hn−1(X̃) is surjective, there exist chains X, Y ∈

Cn(C̃) such that ∂X = z and ∂Y = w. Then, the intersection number z′′ ·w in

X̃ is equal to the intersection number of z′′ and Y in C̃. This follows just as in

the more standard case of intersection numbers for manifolds with boundary.

Next, observe that 0 = ∂2z′′ = ∂((tk − 1)z′ − mz0) = (tk − 1)mz − m∂z0,

which implies that ∂z0 = (tk − 1)z. This also implies the important fact that

tk − 1 annihilates Tn−1(X̃) since z is an arbitrary element of it. Let S =

(tk − 1)X − z0 ∈ Cn(C̃). The chain S is a cycle and so represents an element
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of Hn(C̃). Since Hn(C̃) is a finitely generate Λ-torsion module, there exists an

element ∆ ∈ Λ such that ∆Hn(C̃) = 0. So there exists a chain R ∈ Cn+1(C̃)

such that ∂R = ∆S. Similarly, define the n-cycle B = mX − z′, and choose an

n + 1 chain A in C̃ such that ∂A = ∆B.

Now ∂(mR − (tk − 1)A) = m∂R − (tk − 1)∂A = m∆S − (tk − 1)∆B =

∆(m(tk − 1)X − mz0 − (tk − 1)(mX − z′)) = ∆∂z′′. Using the properties of

intersection forms we can see that ∆z′′ · Y = (mR − (tk − 1)A) · Y . In fact,

(∆z′′ − mR + (tk − 1)A) is a cycle in Cn+1(C̃) and so represents a homology

class. Thus (∆z′′ − mR + (tk − 1)A) · Y is a well-defined element of Λ under

the intersection pairing Hn+1(C̃) ⊗ Hn(C̃, X̃) → Λ. But we know this pairing

is Λ-linear in Hn+1(C̃), and Hn+1(C̃) is Λ-torsion. So this intersection must be

0 ∈ Λ.

Thus, since the intersection z′′ · w in X̃ is equal to the intersection number

z′′ · Y in C̃, we compute

z′′ ·X̃ w

m
=

z′′ ·C̃ Y

m
=

(mR − (tk − 1)A) · Y

m∆

=
R · Y

∆
−

tk − 1

m

A · Y

∆

= V (S, Y ) −
tk − 1

m
V (B, Y ),

and this establishes a formula for {z, w} =
−z′′

·X̃w

m
in terms of the linking pair-

ing V under the projection to I(θ)/θ. Note that this formula is well-defined

on passage to homology, since we know in this case that V is well-defined

up to elements of Λ. So the first term of this expression is well-defined up

to an element of Λ and the second term up to elements of the form tk
−1
m

λ,

λ ∈ Λ. But all such elements are in the kernel of the composition

Γ → Q ⊗ θ ⊂ I(θ) → I(θ)/θ. Note, however, that we are not free to con-

clude that the term tk
−1
m

V (B, Y ) lies in this kernel.

Since this construction yields the well-defined element [z, w], it must be inde-

pendent of the choices made in the construction. This can also be verified purely

algebraically, but since this is not needed here and in the interest of space, we

defer these calculations to a forthcoming paper in which we will further develop

the connection between Blanchfield and Farber–Levine pairings from a purely

algebraic standpoint.
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It is also a routine calculation from here to verify that the isometry class of

(Tn−1(X̃), [ , ]) is determined algebraically completely by the isometry class of

(Hn(C̃), 〈 , 〉).

This completes the proof of Theorem 6.1.

With a little more work, one could enlarge this theorem to apply to more

general cases, for example some disk knots that are not necessarily simple.

However, the theorem as stated will be sufficient for our purposes.

Now that we have shown that, for a simple disk knot, the Farber–Levine

torsion pairing on Tn−1(X̃) is determined by the self-Blanchfield pairing on

Hn(C̃), we wish to strengthen this result somewhat and show that, in fact,

it only depends on the self-Blanchfield pairing on H̄ , the cokernel of the map

Hn(X̃) → Hn(C̃). This pairing will no longer determine all of Hn−1(X̃), but

it suffices to determine Tn−1(X̃) and its Farber–Levine pairing. From this, we

will be able to conclude that the Farber–Levine pairing is determined by the

Seifert matrix of the disk knot.

Theorem 6.2: For a simple disk knot L : D2n−1 →֒ D2n+1, the Λ-module

Tn−1(X̃) and its Farber–Levine Z-torsion pairing are determined up to isometry

by the isometry class of H̄ with its self-Blanchfield pairing.

Proof. Once again, we know that we have the exact sequence

(2) 0 −→ Hn(X̃)
i∗−→ Hn(C̃)

p∗

−→ Hn(C̃, X̃) −→ Hn−1(X̃) −→ 0

and that the modules Hn−1(X̃) and Tn−1(X̃) and the Farber-Levine pairing on

Tn−1(X̃) are determined by the self-Blanchfield pairing on Hn(C̃). The module

H̄ is the cokernel of i∗, and it contains no Z-torsion as Hn(C̃, X̃) is Z-torsion

free (since the knot is simple).

Consider now the following diagram

0 - H̄
p- HomΛ(Hn(C̃), Q(Λ)/Λ)

∂- Hn−1(X̃) - 0

0 - H̄

=

6

ρ - HomΛ(H̄, Q(Λ)/Λ)

π∗

∪

6

η - A

g

∪

6

- 0.

p denotes the map induced from p∗, and the first line is exact by the exactness

of (2). Equation (2) also induces the map ρ : H̄ → HomΛ(H̄, Q(Λ)/Λ) since

the self-Blanchfield pairing is trivial on any element of im(i∗) = ker(p∗). The
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map ρ is injective since the self-Blanchfield pairing on H̄ is nondegenerate. The

map π∗ is induced by the projection π : Hn(C̃) → H̄, and it is injective since π

is surjective and the Hom functor is left exact. The Λ-module A is the cokernel

of ρ by definition, and g is induced by the rest of the diagram. g is injective by

the five-lemma.

Suppose x ∈ Tn−1(X̃), the Z-torsion submodule, and that m = |Tn−1(X̃)|.

From the diagram, x = ∂(y) for some y ∈ HomΛ(Hn(C̃), Q(Λ)/Λ), and my =

p(z) for some z ∈ H̄. By commutativity, my = π∗ρ(z). So my lifts to

HomΛ(H̄, Q(Λ)/Λ), which means that my annihilates the subgroup Hn(X̃) of

Hn(C̃). So for every element w ∈ Hn(X̃), my(w) = V (w, my) ∈ Λ, which

implies that each rational function y(w) must be of the form λw/m for some

λw ∈ Λ.

We claim that in fact we must then have y(w) ∈ Λ for every w ∈ Hn(X̃). The

proof is similar to that of [15, Lemma 5.1]. Suppose that w ∈ Hn(X̃). Since

Hn(X̃) is of type K, by the proof of [15, Corollary 1.3] there is a polynomial ∆

such that ∆Hn(X̃) = 0 and ∆(1) = ±1. So y(∆w) = ∆y(w) = ∆λw/m ∈ Λ.

But since ∆(1) = ±1, no factor of m divides ∆ in Λ, so it must be that m

divides each λw, i.e. y(w) = λw/m ∈ Λ.

This shows that y annihilates Hn(X̃), which implies that y lifts to an element

in Hom(H̄, Q(Λ)/Λ), i.e. y = π∗(y′), which implies that x = ∂(y) = gη(y′). So

Tn−1(X̃) ⊂ im(g). But Tn−1(X̃) is finite [15, Lemma 3.1] and g is injective, so

we must have Tn−1(X̃) ∼= T (A), the Z-torsion subgroup of A. Thus H̄ and its

pairing, realized by ρ, determine Tn−1(X̃)

The Farber–Levine Z-torsion pairing on T (A) ∼= Tn−1(X̃) is now determined

by the self-Blanchfield pairing on H̄ as in the proof of Theorem 6.1 and using the

inclusion of the second row of the diagram into the first. So T (A) and Tn−1(X̃)

have isometric Farber–Levine pairings, induced by the self-Blanchfield pairing

on H̄.

Corollary 6.3: For a simple disk knot L : D2n−1 →֒ D2n+1, the Λ-module

Tn−1(X̃) and its Farber–Levine Z-torsion pairing are determined up to isometry

by any Seifert matrix for L.

Proof. As seen in Section 5, the module H̄ and its Blanchfield self-pairing are

determined by any Seifert matrix for L. Thus the corollary follows immediately

from the preceding theorem.
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7. Changing Seifert surfaces

The entirety of this section will be devoted to studying what happens to the

Seifert matrix of a disk knot when we change the Seifert surface. Such alter-

ations can always be performed by first doing surgery on the boundary Seifert

surface F and then performing internal surgeries that avoid the boundary. Al-

though we will see that different effects arise in different cases, we can summarize

the results as follows:

Theorem 7.1: Any two Seifert matrices for a disk knot differ by a rational

S-equivalence.

Proposition 3.11, which stated that two Seifert matrices for a disk knot are

cobordant, follows.

To prove the theorem, we need to relate various Seifert surfaces for a fixed

disk knot. So suppose that we have two copies of a disk knot L, which we will

call L1 and L2, with Seifert surfaces V1 and V2 and boundary Seifert surfaces F1

and F2. Consider the knot L× I = (D2n+1 × I, D2n−1 × I). This is also a disk

knot, and we can think of it as realizing the trivial cobordism from L1 to L2.

On the boundary, ∂D2n+1 × I, we have the trivial cobordism of the boundary

knot K. As in [14, §3], we can then construct a cobordism U from F1 to F2 in

∂DN × I such that ∂U is equal to the union of F1, −F2 and the trace of the

trivial isotopy. The union V1∪U ∪−V2 is a Seifert surface for L1∪K ×I∪−L2,

the boundary knot of L × I. By [13, §8], this can be extended to a Seifert

surface W for L × I. The pair (W, U) thus provides a cobordism from (V1, F1)

to (V2, F2).

Now, as usual when dealing with cobordism with boundaries, we can break

up the process into two distinct steps. We can first consider the cobordism

of the boundary. In our case this amounts to beginning with V1 ⊂ D2n+1 and

adjoining U ⊂ ∂D2n+1×I. In other words, we form (D2n+1, V1)∪(S2n,F1) (S
2n×

I, U). Note that we do not need to mention the knots explicitly since they are

contained in the embedding information. Then we perform the usual trick and

“rekink” the diagram so that W becomes a cobordism rel boundary from V1∪U

to V2.

In the first subsection below, we consider the second stage and determine

how a Seifert matrix is affected by an internal cobordism, i.e., one that leave
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the boundary Seifert surface fixed. In the second subsection, we consider the

effect of the boundary cobordism.

7.1. Changing the Seifert surface on the interior. In this subsection,

we first assume that we have two of the same disk knot L : D2n−1 →֒ D2n+1

(denoted L1 and L2 when necessary) with two Seifert surfaces V1 and V2 that

agree on the boundary (i.e., they have the same Seifert surface for the boundary

sphere knot F := F1 = F2), then we can embed L×I in D2n+1×I and consider

the boundary knot L1 ∪ −L2 ∪ K × I and its Seifert surface V1 ∪−V2 ∪ F × I.

This can be extended to a Seifert surface W for the whole disk knot L × I, see

[13, §8]. The analysis now of how the change in the Seifert matrix from that

obtained from V1 to that obtained from V2 is highly analogous to the similar

situation for sphere knots studied in [14]. Due to the similarity, we only sketch

an outline of the proof, highlighting where generalizations occur.

One begins by separating W into critical levels using a smooth (PL) height

function. This allows us to restrict to the case where W is obtained from V1 by

adding a single handle so that V1 and V2 differ by a single surgery, so we make

this assumption.

Also as in [14], there is no effect to Fn(V1) if the index of the handle is less

than n or if it has index n and the boundary of the cocore of the handle (which

is ∂∗ of a generator of Hn+1(W, V2)) has finite order in Hn(V2). This follows

via some basic surgery arguments and intersection number arguments.

If the handle is of index n and the boundary of the cocore, a ∈ Hn(V2), is

not a torsion element and that a0 is its primitive (i.e. a is a nontrivial positive

multiple of a0 and a0 is not a multiple of any other element), it can be shown

that either Ē and its pairing are unaffected or that Fn(V2) ∼= Fn(V1)⊕Z⊕Z and

Ē ∼= Ē ⊕ Z2, with the pairing restricted to Ē the original one. In fact, which

case occurs depends only on whether or not Hn(W, V1; Q) → Hn−1(V1, Q) is

injective. This is also a consequence of basic surgery arguments, such as those

in [14], and some extra diagram chasing that is necessary to account for V1 and

V2 having nonspherical boundary.

The upshot is that we obtain a basis for Ē2 consisting of the basis {δi}
m
i=1

for Ē1 (translated by homology up to V2) plus a0 and another new generator,

b0. Looking at the Seifert matrix for Ē2, Lemma 1 of [14] implies that the

translated δi will have the same linking matrix θ1 as they did for V1. And

since a0 corresponds to the boundary of the cocore of the added handle, it is
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null-homologous in W and thus links trivially with all the translated δi and also

with itself. Thus as in [14], we obtain a matrix for θ2 of the following form:

(3)







θ1 0 η

0 0 x

ξ x′ y






,

where θ1 is an m × m matrix, η is a 1 × m matrix, ξ is an m × 1 matrix,

and x, x′, and y are integers. The key difference from Levine’s matrix [14,

p. 188] is that here x′ + (−1)nx, which is the intersection number of a0 and

b0, will not necessarily be ±1. This is because V2 does not necessarily have

a spherical boundary, and so we do not have Poincaré duality to enforce the

integral unimodularity of θ + (−1)nθ′.

In fact, we can choose b0 so that it maps to a multiple of the generator of

Hn−1(S
n−1 × Sn) under the boundary map of the Mayer–Vietoris sequence

for the surgery representation of V2. This implies that as a chain, b0 can be

represented by a multiple of the attached disk Dn suitably translated into V2

plus another piece whose boundary is a multiple of the attaching Sn−1, also

translated into V2. Note that the intersection number of b0 and a0 is the smallest

possible (in absolute value) nonzero intersection number between a0 and all

elements of Ē2: a0 does not intersect any of the δi, since they all lie in V0 and

a0 is the cocore of the handle. Nor does a0 intersect itself, since the cocore can

be pushed off itself along the handle. So no further changes of basis keeping

a0 fixed can provide a basis element that has a smaller nonzero intersection

number with a0 than b0 does. Clearly, however, the intersection of a0 and b0 is

nontrivial.

Now, from [7, §3.6], the Alexander polynomial cn(t) associated to the coim-

age of Hn(C̃; Q) → Hn(C̃, X̃; Q) and determined up to similarity in Λ is

the determinant of (−1)n+1(R−1)′τRt − τ ′ = (R−1)′((−1)n+1τRt − R′τ ′) =

(R−1)′((−1)n+1θ′t−θ). But recall that we also know that, with an appropriate

integrally unimodular change of bases (which therefore will not affect its de-

terminant), −R = θ + (−1)nθ′, here R is just the transpose of the intersection

matrix on Ē. So the Alexander polynomial is the product of the determinants

of

((−1)n+1θ′ − θ))−1 and (−1)n+1θ′t − θ.

If we compare these polynomials as obtained using θ2 and θ1, we see that, just

as in [14], the determinant of ((−1)n+1θ′2t − θ2) is that of ((−1)n+1θ′1t − θ1)
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multiplied by ((−1)n+1xt − x′)((−1)n+1x′t − x), and we also see that the de-

terminant of ((−1)n+1θ′2 − θ2))
−1 is that of ((−1)n+1θ′1 − θ1)

−1 multiplied by

((−1)n+1x − x′)((−1)n+1x′ − x). Since this modification to the Seifert ma-

trix cannot change the polynomial, which is an invariant of the knot, beyond

multiplication by ± a power of t, it follows that either x′ or x must be 0.

If it so happens that x′ + (−1)nx = ±1, then θ2 and θ1 are integrally S-

equivalent as in [14]. In some cases, this will be guaranteed. For example, if the

attaching sphere Sn−1 is nullhomologous in V2, then b0 can be chosen so that

the intersection of a0 and b0 is equal to 1. We already know that Sn−1 cannot

represent a free element of V1, or else ∂∗ : Q ∼= Hn(W, V1; Q) → Hn−1(V1; Q)

will be injective, which will imply that Hn(W ; Q) ∼= Hn(V1; Q), which we know

does not happen in the case under consideration. So the remaining case is that

in which Sn−1 is division null-homologous, but not null-homologous itself.

We know by Poincaré duality that there must be an element of Hn(V2, F )

whose intersection with a0 must be 1, and again this must be an element that

is the sum of two chains, one of which is represented by the core of the handle

(pushed into the boundary of the handle) and the other of which must have as

boundary one piece that is the attaching sphere and another piece that is in F

(this second piece cannot be empty, else Sn−1 bounds in V2, which is not true

in the case under consideration). In other words, we see that in this case the

attaching sphere must be homologous to a cycle in F . Thus this “bad” case, in

which x′ + (−1)nx 6= ±1, can only happen if the attaching sphere represents a

torsion element of Hn−1(V1) that is in the image of Hn−1(F ) under inclusion.

In this case, we do not have S-equivalence, per se, but we do obtain a special

type of elementary expansion of the form above, with either x or x′ equal to

0 and the other equal to the intersection number of a0 and b0. We do obtain

rational S-equivalence

This completes our study of what happens to the Seifert matrix when a handle

of index ≤ n is added to the interior of V . But of course the addition of handles

of higher index can be treated by reversing the direction of the cobordism. So

this takes care of all surgeries on spheres in the interior of V .

7.2. Changing the boundary Seifert surface. It remains to consider

those cobordisms that simply add to the boundary; we can consider this pos-

sibility in more detail. Again we can break the situation into the addition of

one handle at a time by the usual Morse theory argument. So we must see the
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effect on the Seifert matrix of adding a handle to V along F . We will denote

V plus this handle as V ′, we will let F ′ be the new resulting boundary piece

after the surgery, and we will let F0 represent F minus a neighborhood of the

attaching sphere. Let i : F → V , i0, i′ : F ′ → V ′, and i0 : F0 → V denote the

inclusion maps.

We first prove that in most dimensions attaching a disk to V along F does

not affect the Seifert matrix.

7.2.1. Handles of index 6= n,n + 1. We consider attaching a handle of index

j 6= n, n+1 so that V ′ ∼h.e.V ∪Dj . Then Hi(V
′, V ) 6= 0 if and only if i = j, so

Hi(V ) ∼= Hi(V
′) by inclusion for i 6= j, j − 1. In particular, Hn(V ) ∼= Hn(V ′)

unless j = n or j = n + 1. Some elementary diagram chasing then reveals that

cok(i : Hn(F ) → Hn(V )) ∼= cok(i′ : Hn(F ′) → Hn(V ′)) and that the Seifert

matrices remain unchanged by the handle attachment.

This leaves the cases of j = n and j = n + 1.

7.2.2. Handles of index n. In this case Hn(V ′, V ) ∼= Z and Hi(V
′, V ) = 0

otherwise. This implies that Hn(V ) → Hn(V ′) is injective, and either it is an

isomorphism or the inclusion of a direct summand, the other summand being

Z.

Case: Hn(V ) ∼= Hn(V ′). Assume that Hn(V ) ∼= Hn(V ′). This will be the case

if ∂∗ : Hn(V ′, V ) → Hn−1(V ) is injective, which will happen if the attaching

sphere for the handle generates a free subgroup of Hn−1(V ).

The Mayer-Vietoris sequences for F and F ′ become

(4)

0 −→ Hn(F0) −→ Hn(F ) −→ Z ⊕ Z
Φ

−→ Hn−1(F0) ⊕ Z −→ Hn−1(F ) −→ 0

0 −→ Hn(F0) −→ Hn(F ′) −→ Z ⊕ Z −→ Hn−1(F0) ⊕ Z −→ Hn−1(F
′) −→ 0.

By chasing through these sequences and the long exact sequence of (F ′, F0),

one establishes that cok(i0) ∼= cok(i′).

We next consider the exact sequence of the pair (F, F0). By excision,

Hi(F, F0) ∼= Hi(S
n−1 × Dn, Sn−1 × Sn−1). So again Hn(F0) → Hn(F ) is

injective, and Hn(F, F0) ∼= Z is generated by the cell ∗ × Dn.

Subcase: Hn(F0) ։ Hn(F ). Hn(F0) → Hn(F ) will be surjective if the bound-

ary of the cell ∗×Dn, the boundary of a fiber of the normal disk bundle of the
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attaching sphere, generates an infinite cyclic group in Hn−1(F0). In this case,

one easily verifies cok(i0) ∼= cok(i) Thus together with the previous calculation

that cok(i0) ∼= cok(i′), we have cok(i) ∼= cok(i′), and since all of these vertical

maps have been by inclusions, each cokernel can employ the same chains as

generators, whence the Seifert matrices are identical.

Subcase: Not Hn(F0) ։ Hn(F ). In the alternative case in which a multiple

of this fiber sphere bounds in F0, there is a splitting and Hn(F ) ∼= Hn(F0)⊕Z.

The Z term can be generated by the sum of two chains, one lying in F0 and one

in Sn−1×Dn, both of whose boundary chains are corresponding (opposite sign)

multiples of the fiber sphere (of course the one not in F0 will just be a multiple

of the fiber disk). This can also be seen from the Mayer–Vietoris sequence.

Call this generator a. If a bounds in V , then Hn(F0) → Hn(F ) will be onto

the coimage of Hn(F ) → Hn(V ) and it will follow again that cok(i) ∼= cok(i′).

Similarly, if the image of a in Hn(V ) is torsion, then Hn(F0) → Hn(F ) will

be onto the coimage of Hn(F ) → Hn(V ) mod torsion. Again we get cok(i) ∼=

cok(i′) and isometric pairings.

So the one remaining case of interest in this subcase will be that in which the

image of a generates an infinite cyclic group in V . Note that, since

Hn(F0) → Hn(F ) is injective, Hn(F0) → Hn(V ) actually factors through

Hn(F ) so that the image of the Hn(F0) summand of Hn(F ) will agree with

the image of Hn(F0).

We will actually see that a multiple of the image of a in Hn(V ) lies in the

image of Hn(F0). This will imply that cok(i) ∼= cok(i0) mod torsion, and it

will follow that the Seifert matrix is unchanged by the addition of the han-

dle. To prove the claim, we consider the image of a in Hn(V ), still represented

by the chain a as described above. Since the inclusion Hn(V ) ∼= Hn(V ′) is

an isomorphism, a must represent an infinite cyclic subgroup of Hn(V ′). The

image of this homology class in Hn(V ′, F ′), also represented by (the appro-

priate coset of) a, must be 0 for the following reason. By duality, we know

that Hn(V ′) and Hn(V ′, F ′) are dually paired by the intersection form. But

our chain representing a in Hn(V ′, F ′) can be made disjoint from any other

chain representing a class in Hn(V ′) since all such classes can be assumed to

lie in V and hence the interior of V using the inclusion-induced isomorphism

Hn(V ) ∼= Hn(V ′) and by pushing in along a collar of the boundary F of V .

But a lies in F and hence is disjoint from any such chain. We conclude that
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a represents a torsion element in Hn(V ′, F ′). Thus some multiple of a must

be in the image of Hn(F ′) → Hn(V ′), and hence the image of the composite

Hn(F0)
∼=
→ Hn(F ′) → Hn(V ′). So some multiple of a is representable by a chain

lying entirely in F0. By these geometric arguments, or by chasing the diagram

around algebraically, we see that some multiple of a ∈ Hn(V ) is in the image of

Hn(F0). So a goes to a torsion element in cok(i) and so 0 in cok(i) mod torsion.

Case: Hn(V ) ≇ Hn(V ′). We next consider the case in which Hn(V ) ≇

Hn(V ′). This happens if Z ∼= Hn(V ′, V ) → Hn−1(V ) has nontrivial ker-

nel, i.e. if a multiple of the attaching sphere bounds in V . In this case,

Hn(V ′) ∼= Hn(V ) ⊕ Z, the additional Z summand can be taken as generated

by a chain C consisting of a multiple of the core of the attached disk Dn and a

chain in V whose boundary is a multiple of the attaching sphere. By pushing

in along a collar of ∂V , we can assume that the geometric intersection of this

chain C with F is the attaching sphere. C is well-defined in this way up to a

cycle in V , but we can fix a specific one as a generator of the summand.

Subcase: Hn(F ′) ∼= Hn(F0) ⊕ Z. Suppose that the translate of the attaching

sphere, ∂(Dn × ∗), ∗ ∈ Sn−1, weakly bounds in F0. Then from the long exact

sequence of the pair (F ′, F0), we see that Hn(F ′) ∼= Hn(F0) ⊕ Z. This follows

since Hn(F ′, F0) ∼= Hn(Dn × Sn−1, Sn−1 × Sn−1) ∼= Z, using excision and

the long exact sequence of the latter pair. The distinguished Z summand of

Hn(F ′) ∼= Hn(F ) ⊕ Z can then be generated by a chain B composed of a

multiple of a translate of the core of the handle and another chain in F0 whose

boundary coincides with that of this multiple of the core. B is well-defined up

to cycles in F0, and again we fix a representative. The image in Hn(V ′, V ) of

the chain B represents a non–trivial multiple of the generator.

We will study cok(i′) and cok(i0) modulo torsion. Writing Hn(F ′) ∼=

Hn(F0)⊕Z and Hn(V ′) ∼= Hn(V )⊕Z, we have clearly that i′(x, 0) = (i0(x), 0),

since the image of F0 is in V and hence all such elements go to 0 under the

surjection Hn(V ′) → Z ∼= Hn(V ′, V ). We also have that i′(0, B) = (y, z), where

y is unknown at this point, but z must be nonzero, since, again, we know that

B represents a nontrivial multiple of the generator of Hn(V ′, V ). It follows by

an application of the serpent lemma that cokQ(i0) ∼= cokQ(i′) and that, with Q

coefficients, cokQ(i0) ∼= cokQ(i′).
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Now let us look at Hn(F0; Q) → Hn(F ; Q). This is also an injection by the

long exact sequence of the pair. Suppose it is not an isomorphism. Then from

the long exact sequence of the pair, Hn(F ; Q) ∼= Hn(F0; Q)⊕Q. A generator A

of the distinguished Q can be represented by a chain contained in F consisting

of a multiple of a fiber of the tubular neighborhood of the attaching disk plus

a chain in F0 with the opposite boundary. This is because the existence of this

extra term implies that a multiple of the boundary of the fiber bounds in F0.

We will see that this situation actually cannot arise.

In Hn(V ′, F ′), the image of A is clearly homologous to a multiple of the

relative cycle generated by the cocore of the handle, and, by the assump-

tions of this case leading to the nontriviality and nontorsion of C, the inter-

section of A and C cannot be 0, and it would follow that this image of A

generates an infinite cyclic subgroup of Hn(V ′, F ′; Q). So under the maps

Hn(F ) → Hn(V ) → Hn(V ′) → Hn(V ′, F ′), A must map to a nontrivial el-

ement. Thus A maps to some element 0 6= x ∈ Hn(V ; Q), which maps to

0 6= (x, 0) ∈ Hn(V ′; Q). Now consider the image of x in Hn(V ′, F ′). This ele-

ment is still represented by A, modulo chains in F ′. The intersection of A with

any cycle in V is 0, since any such cycle can be pushed into the interior of V

and thus be made disjoint from F and F ′. Now consider the intersection of A

with C. We know that i′(0, B) = (y, z), where z = mC for some m ∈ Q. But

then the intersection of A with (y, z) is 0, since (y, z) goes to 0 in Hn(V ′, F ′)

and since A is the image of an element of Hn(V ′). But this implies that the

intersection of A with y is the negative of its intersection with z. But the in-

tersection of A with y is 0 since y is in Hn(V ). Thus the intersection of A with

z is 0, and so the intersection of A with C is 0. It then follows that A must

map to 0 in Hn(V ′, F ′; Q) since Hn(V ′, F ′; Q) and Hn(V ′; Q) are dual under

the intersection pairing. So we arrive at a contradiction. Thus it must be in

fact that Hn(F ) ∼= Hn(F0).

So we see that that cok(i) ∼= cok(i0). However, we still have that

cok(i0) → cok(i′) may only be an injection, the cokernel of this map being

a cyclic torsion group. We can assume by changing basis if necessary that,

modulo torsion, this map is represented by a matrix that is 0 except on the

diagonal, all diagonal entries except perhaps the last one being equal to 1. The

last entry is nonzero, say p, but may not be 1. So now all other basis elements of

cok(i′) but the last are represented by the chains that represent them in cok(i)

mod torsion and so their linking pairings with each other remain unchanged.
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The last basis element is homologous to 1/p times a chain lying in cok(i). So

each of its linking numbers will simply be 1/p times those for the corresponding

chain in cok(i). Hence the change to the Seifert matrix is to multiply the last

row and column by 1/p. In other words, the Seifert matrix changes by a rational

change of bases, although the new matrix must also be integral.

Subcase: Hn(F0) ∼= Hn(F ′) ∼= Hn(F ).

Suppose Hn(F0) ∼= Hn(F ′). In this case, we show first that it is impossible to

also have Hn(F0) ∼= Hn(F ), induced by inclusion. So suppose that Hn(F0) ∼=

Hn(F ′) ∼= Hn(F ), both isomorphisms induced by inclusion of F0. Then the

attaching sphere must generate a torsion (or zero) subgroup of Hn−1(F ). This

is because all cycles of Hn(F ) can be homotoped into the interior of F0 so that

the intersection of the attaching sphere with any such cycle is empty. Thus,

by the Poincaré duality of the 2n − 1 manifold ∂V , whose homology in all

but the top dimension is equal to the homology of F , the attaching sphere

cannot generate a free subgroup of Hn−1(F ). It follows that some multiple of

the attaching sphere must bound in F . Thus, in rational homology, in which

Hn(V ′; Q) ∼= Hn(V ; Q) ⊕ Q, the distinguished Q summand can be taken as

generated by a cycle C composed of the attaching disk and a chain in F whose

boundary is the (negative of) the attaching sphere. A multiple of C will generate

the corresponding distinguished Z term with Z coefficients.

Okay, so now if Hn(F0) ∼= Hn(F ), cok(i) ∼= cok(i0), integrally or rationally

and generated by the same cycles in F0. And since Hn(F0) ∼= Hn(F ′), also

generated by the same cycles, im(i0) = im(i′) ⊂ Hn(V ) ⊂ Hn(V ′), so we see

that cokQ(i′) ∼= cokQ(i0) ⊕ Q, the distinguished Q summand again generated

by C. So the rational Seifert matrix for V ′ has one more row and column than

that for V , and except for this row and column is identical to that for V . In

this row and column, all except possibly the diagonal entry must be 0 because

C cannot link any element in V . This is because in the process of putting

a cobordism on F , we have extended the knot originally in D2n+1 to be in

D2n+1 ∪ S2n × I. The cobordism from F lies in S2n × I, and hence so does C.

But all element representing cycles from Hn(V ) lie in the original D2n+1. Since

the n-dimensional homology groups of both D2n+1 and S2n×I are trivial, cycles

in each can bound entirely within each (and we can push along some collars if

necessary). So C need not link anything from Hn(V ). Thus the rational Seifert

matrix is 0 along the additional row and column except where they meet.
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But now this must violate the invariance of the Alexander polynomial, which

can be computed from the rational Seifert matrix. If the diagonal term is 0 or

if n is odd, then R = −θ′ + (−1)n+1θ is singular, which is impossible. If the

diagonal term is not 0, say it is x 6= 0, then the Alexander polynomial will be

altered by multiplication by xt+x
2x

= t+1
2 , which is also impossible as this term

is not a rational multiple of a power of t and hence not a unit in the ring of

rational Laurent polynomials.

Subcase: Hn(F ′) ∼= Hn(F0) but Hn(F0) ≇ Hn(F ).

In this case, Hn(F ) ∼= Hn(F0) ⊕ Z, from the long exact sequence of (F, F0).

The Z term can be taken as generated by a chain A that is the sum of a multiple

of the fiber disk of the tubular neighborhood of the attaching sphere and another

chain in F0 with the opposite boundary.

The chain A must generate an infinite cyclic summand in Hn(V ) because,

under the composition Hn(F ) → Hn(V ) → Hn(V ′) → Hn(V ′, F ′), A becomes

relatively homologous to a multiple of the cocore of the attached handle, and

this cocore must have a non-zero intersection number with any chain generating

the distinguished Z summand of Hn(V ′) ∼= Hn(V )⊕Z. We do not run here into

the contradiction of the previous similar case since it is no longer true that a

multiple of the generator of this summand of Hn(V ′) is in the image of i′, since

now the image of i′ in Hn(V ′) must equal the image of i0 in Hn(V ) ⊂ Hn(V ′).

Meanwhile, the image of A in Hn(V ) must not be in the image of Hn(F0),

since the composition Hn(F0) ∼= Hn(F ′) → Hn(V ′) → Hn(V ′, F ′) is 0, and we

know that the image of Hn(F0) in Hn(V ′) is the same as the image of Hn(F0) in

Hn(V ) ⊂ Hn(V ′). So we see that, in fact, A generates an infinite cyclic group in

Hn(V ) that is not in the image of Hn(F0). So, mod torsion, cok(i0) ∼= cok(i)⊕Z.

It also follows from the serpent lemma that cok(i′) ∼= cok(i0)⊕Z ∼= cok(i)⊕Z2.

Thus we see that the Seifert matrix for V ′ has two more rows and columns

than the one for V , and, excluding these rows and columns, the matrices agree.

We must now determine what entries go in these last two rows and columns

for V ′. By changing bases if necessary, we can assume that A is a multiple

of a generator of the distinguished Z term of cok(i0) ∼= cok(i) ⊕ Z. But as in

the previous case, we see that A, because it lies in F , does not link with any

of the cycles in Hn(V ) including itself. It can only possibly link nontrivially

with a chain generating the distinguished Z summand of Hn(V ′) ∼= Hn(V )⊕Z.

The same is then true for the generator of the summand containing A. Thus
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the matrix for V ′ must differ from that for V as in equation (3). The same

arguments then show that we must have a rational S-equivalence.

7.2.3. Handles of index n + 1. Consider again the long exact sequence for

(F, F0). By excision, Hi(F, F0) ∼= Hi(S
n × Dn−1, Sn × Sn−2). Clearly,

Hn+1(S
n×Dn−1) = Hn−1(S

n×Sn−2) = 0, and furthermore, Hn(Sn×Sn−2) ∼=

Hn(Sn ×Dn−1) ∼= Z, the isomorphism being induced by inclusion and taking a

generator Sn × ∗ ⊂ Sn × Sn−2 to a generator Sn × ∗ ⊂ Sn × Dn−1. It follows

that Hi(S
n ×Dn−1, Sn ×Sn−2) and hence Hi(F, F0) is 0 for i = n, n +1. Thus

Hn(F0) ∼= Hn(F ), induced by inclusion. It follows that cok(i) ∼= cok(i0).3istu

On the other hand, we consider the Mayer–Vietoris sequence for F ′ and

F0. Since Hn−1(S
n × Sn−2) = Hn(Dn+1 × Sn−2) = 0, the inclusion-induced

homomorphism Hn(F0) → Hn(F ) is onto, possibly with kernel represented by

the attaching sphere, appropriately translated to Sn × ∗ ⊂ Sn × Sn−2 ⊂ F0.

Meanwhile, since V ′ is obtained from V by attaching an n + 1 handle,

Hi(V, V ′) is 0 for i 6= n + 1 and Z for i = n + 1. Thus Hn(V ) → Hn(V ′) is also

onto, and its kernel is also generated by the attaching sphere. If the class of the

attaching sphere is either trivial or torsion in Hn(V ), then Hn(V ) → Hn(V ′) is

an isomorphism mod torsion, and we obtain a diagram

Hn(F0)
i0−−−−→ Fn(V )

onto





y





y

∼=

Hn(F ′)
i′

−−−−→ Fn(V ′).

Again we see that cok(i0) ∼= cok(i), and again, since all maps are induced by

inclusions, the Seifert pairing is unchanged.

If the attaching sphere generates an infinite cyclic subgroup of Hn(V ), it

must also generate an infinite cyclic subgroup of Hn(F0) (if some multiple of it

bounds in F0, then that multiple also bounds in V since F0 ⊂ V ). So we have

the following diagram

0 - Z - Hn(F0) - Hn(F ′) - 0

0 - Z

∼=

?
- Hn(V )

i0

?
- Hn(V ′)

i′

?
- 0,
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in which both Z summands are generated by the attaching sphere. It follows

now from the serpent lemma that cok(i0) ∼= cok(i′). It once more follows that

the Seifert matrix is unchanged.
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